
Wonderware® FactorySuite™

InControl™ User’s Guide
Revision H

Last Revision: January 2004

Invensys Systems, Inc.

All rights reserved. No part of this documentation shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Invensys Systems, Inc. No copyright or patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has
been taken in the preparation of this documentation, the publisher and the
author assume no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained
herein.

The information in this documentation is subject to change without notice and
does not represent a commitment on the part of Invensys Systems, Inc. The
software described in this documentation is furnished under a license or
nondisclosure agreement. This software may be used or copied only in
accordance with the terms of these agreements.

© 2001-2004 Invensys Systems, Inc. All Rights Reserved.

Invensys Systems, Inc.
26561 Rancho Parkway South
Lake Forest, CA 92630 U.S.A.
(949) 727-3200
http://www.wonderware.com

Trademarks

All terms mentioned in this documentation that are known to be trademarks or
service marks have been appropriately capitalized. Invensys Systems, Inc.
cannot attest to the accuracy of this information. Use of a term in this
documentation should not be regarded as affecting the validity of any
trademark or service mark.

Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad, DT
Analyst, FactoryFocus, FactoryOffice, FactorySuite, FactorySuite A2, InBatch,
InControl, IndustrialRAD, IndustrialSQL Server, InTouch, InTrack,
MaintenanceSuite, MuniSuite, QI Analyst, SCADAlarm, SCADASuite,
SuiteLink, SuiteVoyager, WindowMaker, WindowViewer, Wonderware, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and
affiliates. All other brands may be trademarks of their respective owners.

Contents 3

Contents

InControl™ User’s Guide1

InControl™ Environment User’s Guide1

CHAPTER 1: Getting Started with InControl....1
Overview .. 2

IEC Compliance ... 2
Programming Languages .. 2

System Requirements .. 4
Technical Support... 5

Before Contacting Wonderware ... 5
Installation Guidelines.. 6

Before You Start—InTouch and InControl... 6
Before You Start—Additional Recommendations.............................. 6

About the User Guides ... 7
Reading a Document .. 7
Contents - This User's Guide .. 7
Contents - I/O User's Guides .. 7
The HTML Help ... 8

Running InControl: Quickstart .. 9
Starting InControl ... 9
Creating a Project ... 9

What’s Next? ...11

CHAPTER 2: The InControl Environment1
Working in the Development/Runtime Windows 2

Development Window .. 2
Runtime Window.. 3
Runtime Engine Icons ... 4

Using the Standard Toolbar ... 5
Using the Runtime Toolbar ... 6
Using the Debug Toolbar ... 7
Using the Menu Bar ... 8

File Commands... 8
Edit Commands ... 9
View Commands... 10
Insert Commands .. 12
Runtime Commands ... 12
Debug Commands ... 15
Tools Commands .. 16
Window Commands .. 16
InControl User’s Guide

4 Contents
Help Commands ..17

CHAPTER 3: Setting Up Security19
Overview ..20
Logging On/Off and Changing a Password ..22

Logging On..22
Logging Off ...22
Changing a Password ..22

Managing Security ..23
Adding User Names ..23
Changing Passwords and Deleting User Names23

Locking SFC Algorithms ..25
Using Windows Security...26

CHAPTER 4: I/O Configuration27
Overview...28

Single Board Installation ...28
Multiple Board Installation ...28
Multiple Board / Different Vendor Installation29
Communicating Without a Scanner Board..29
Communicating Through SuiteLink..30
General Installation Procedure ..31

Adding/Removing Drivers ...32
Adding a Driver to the Project Window ...32
Removing or Deleting a Driver ...33

Configuring the I/O...34
Simulating I/O ..34

CHAPTER 5: Project Organization/
Management ..37

Overview ..38
Programs..38
Function Blocks...38
Functions ...39
Function/Function Block Differences ...40
Macros ..40
Variable Names..40

Managing Projects...42
Creating a Project ..42
Removing a Project ...43
Adding a Project ..43
Modifying the Project Name/Description ...43
Adding a New POU to a Project ...44
Adding an Existing POU to a Project..46
InControl User’s Guide

Contents 5
Removing/Deleting a POU .. 47
Renaming a POU .. 47
Organizing a Project ... 48

Defining Function Blocks .. 50
Setting Parameters and Variables ... 50
Defining an Instance ... 53
Entering Code for the Call.. 53

Defining Functions... 55
Setting Parameters and Variables ... 55
Specifying Data Type for a Function Return Value.......................... 57
Functions and Background Execution .. 58
Entering Code for the Call.. 58

Adding/Organizing I/O Drivers .. 60
Configuring the Runtime Engine ... 61
Accessing the Symbol Manager .. 62
Targeting the Hardware Platform ... 63
Changing Program Priority and Execution Order 64

CHAPTER 6: Defining Variables......................65
Introduction .. 67

Variable Names... 67
Local and Global Variables... 67
Variables Assigned a Constant Value ... 68
Retentive Variables ... 68
Enumerated Variables .. 69
Read-Only Variables... 69
Forced Variables ... 69
Variables and Runtime Operation... 70

Variable Data Type Groups .. 71
LREAL .. 73
REAL ... 73
DINT ... 73
INT ... 73
SINT... 74
Unsigned Integers... 74
DWORD .. 74
WORD.. 74
BYTE .. 74
BOOL .. 75
Date / Time Data Types.. 76

DT... 76
DATE .. 76
TOD .. 77
TIME ... 77
Using Date/Time-Based Data Types in Expressions 78
InControl User’s Guide

6 Contents
TMR ..79
ANY ..80
FILE ...80
STRING ..82
RTEMODE ...82
User-Defined ...83
Data Type Conversion...84
Accessing the Symbol Manager ...85
Using the Symbol Manager Toolbar ...88
Editing Tips - Context Menus ...89
Editing Tips - Changing Member Order ...89
Editing Tips - Copy / Paste / Move Symbols ..90
Creating a Variable..91
Creating an Array of Variables..93
Referencing Arrays ...93
Assigning a Name to a Bit in a Variable ...93
Creating a User-Defined Data Type ...95

Custom-Designing a Data Type...95
Using the User-Defined Data Type ...96

Printing Information for Variables ..97
System Variables - General ...98
System Variables - Runtime Engine..99
Transferring Symbol Databases ..101

Symbol Exchange Between InControl Projects101
Symbol Cross-Reference Reports..101

Symbol Exchange Between InControl and InTouch...........................102
Importing/Exporting Symbols ...103
InControl CSV File Format ...104
Editing Symbol Files ...105

CHAPTER 7: Using the Factory Object Editor...
107

Defining a Factory Object...108
Installing ActiveX Controls ..109
Organizing FOEs...111
Adding FOEs to a Project ...112
Configuring Factory Objects...113
Using the Tool and Menu Bars ...114
Running and Controlling FOEs...116
Runtime Animation...116
Uploading Parameters ...117
Using Third-Party FOEs ...117
Event Handling by Factory Objects ..118
InControl User’s Guide

Contents 7
Mapping Functions to Events ..118
Defining the Function..119

Referencing InControl Factory Objects ... 120

CHAPTER 8: Running a Project121
Selecting Runtime Options... 122
Connecting to the Runtime Engine .. 125
Checking the Connected Node... 126
Using the Runtime Engine Monitor ... 127
Using the Runtime Engine Icons.. 128
Using the Runtime Engine Monitor Commands 128
Running/Exiting the Runtime Engine Monitor 130
Validation and Download ... 131
Validating a Project .. 132
Downloading a Project ... 134
Validating an Individual Program .. 136
Downloading an Individual Program .. 137
Project/Program Execution .. 139

Running a Project ... 139
Running an Individual Program ... 140

Stopping a Project .. 142
Stopping a Program.. 143
Project/Program Execution Order ... 144

Setting Program Order in the Execution View 144
Setting Program Priority in the Execution View 145

Debugging a Program... 146
Checking the Status Bar.. 146
Checking the Program Mode.. 146
Single Scanning a Project/Program .. 148
Using Breakpoints .. 148
Stepping a Program... 149

Monitoring Program Variables ... 152
Adding a Variable to the Watch Window 152
Adding Multiple Variables to the Watch Window.......................... 153
Removing a Variable .. 154
Adding a Table of Variables to the Watch Window........................ 155
Modifying/Forcing a Variable .. 156
Adjusting Update Rate.. 159
Pausing the Watch Window Update ... 159
Unforcing Variables .. 159
Displaying Forced Variables... 160
Using the Watch Window on a Remote Computer 160
Using the Watch Window Menu... 161
Using the Stand-Alone Watch Window.. 162
Using the Editor Window ... 165
InControl User’s Guide

8 Contents
Checking the Wonderware Logger..166
Using the Runtime Engine System Variables167

CHAPTER 9: InControl System Administration
169

Runtime Engine Timeline ...170
SFC Execution...171
Structured Text Program Execution ..172
RLL Execution ..172
FOE Execution ..172
Program Execution and Stepping a Program...................................173
Project/Program Execution and Single Scanning............................173

Accessing the Runtime Engine Properties ..174
Checking General Properties of the Runtime Engine175
Setting Scan Times..177
Tuning the Scan...179

Targeting CPU Utilization ...179
Examples of Normal / Skipped Scans ...181
Scan Operation and the Watchdog Timer..183
I/O Considerations...183

Checking Runtime Status Data ...185
Checking the Remote Node ..187

Using the Remote Tab ...187
Downloading Files ..188
Synchronizing Time ..189

Configuring Components..190
Using the Components Tab ...190
SuiteLink Component Configuration ..191
SuiteLink Component Status...191

Looking at Logger Data ..192
Clearing Runtime Engine Fault Mode ...193
Clearing Program Fault Mode ..194
Handling I/O and Other Hardware Errors...195
Configuring Runtime Engine Service Startup.....................................195
Handling Power Failure ..196

Using an Uninterruptible Power Supply..196
Using System and User-Defined Variables196
Retentive/Forced Variables and Power Failure197
Restarting Projects Automatically...197

Running Multiple Projects ..200
Configuring a Connection to a Remote Node201
Transferring/Archiving Project Data ..203
Using the Watch Window on the Remote Node..............................204
Configuring I/O on the Remote Node ...204

Changing System Registry Keys...205
Changing FOE Registry Setting ..205
InControl User’s Guide

Contents 9
Displaying Compiler Warnings .. 206
Issuing Runtime Engine Commands .. 208
Value/Time/Quality Support... 209
Entering Event Viewer Settings ... 210

APPENDIX A: Reserved Words.....................211
InControl Reserved Words .. 212

APPENDIX B: Data Types215
Data Type Categories ... 216
Data Type Ranges... 218

APPENDIX C: Monitoring Data By
DDE/SuiteLink..223

Overview ... 224
Monitoring Variables from InTouch... 225
Monitoring Variables from Excel .. 226

APPENDIX D: Extensions to IEC 61131-3.....229
Data Types.. 230

Unsupported Data Types... 230
Data Type Conversion .. 230

Parameters Specific to InControl ... 231
Error Conditions... 234

APPENDIX E: Keyboard Shortcuts237
General Operations... 238
Project Window.. 239
Output Window .. 239
Project Manager ... 240
Watch Window ... 240
Program Editors.. 241
Symbol Manager .. 242
Symbol Picker .. 242

 Index..243

InControl™ Language Editors User’s Guide
InControl User’s Guide

10 Contents
1

CHAPTER 1: Relay Ladder Logic Program
Elements ..9

Power Flow - Solving Simple Contact/Coil Logic10
Power Flow - Function Blocks..11
RLL Extensions to IEC 61131-3...12
Creating an RLL Program...13
The RLL Tools ..14

Using the RLL Tool and Menu Bar ...14
Editing Tips ...15

Adding Contacts..17
Adding Coils ...19
Adding Rungs ...22
Adding OR Branches ..22
Deleting OR Branches ..25
Adding Labels and Jump Coils ...26
Adding SFC Transition Coils..29
Adding Functions / Function Blocks ..30

Predefined Functions / Function Blocks ...30
User-Defined Functions / Function Blocks35

Adding a Comment ...37

CHAPTER 2: Using the SFC Editor.................39
Creating an SFC Program ...40
The SFC Tools ..41

Using the SFC Tool and Menu Bar ...41
Editing Tips ...42

Adding Program Elements ..43
Adding a Step ..43
Adding a Transition ...44
Adding RLL Transitions..45
Adding Boolean Transitions..47
Adding a Macro Step...48
Adding an Action ..49
Adding New Actions ...49
Editing New Actions ...50
Editing Existing Actions ...50
Editing Parameters of an Existing Action ...50
Deleting an Action...51
Renaming an Action ..51
Adding a Jump...52
Adding a Label ..53
Adding a Loop...54
InControl User’s Guide

Contents 11
Adding a Select Divergence ... 55
Adding a Parallel Divergence... 57
Adding a Library Step .. 58
Building the Step Library ... 58
Adding a Step from the Library.. 60
Bitmap Library Editor .. 60
Adding Program Comments ... 64

Editing Program Elements ... 65

CHAPTER 3: SFC Program Elements.............67
Elements of the SFC... 68
Program Flow... 68
SFC Extensions to IEC 61131-3 .. 69
Step... 71

Parameters .. 72
Code.. 73
Using Library Steps .. 73
Using the SFC and Step System Variables 73

Transition.. 74
Evaluation ... 75
Parameters .. 75

Macro Step ... 77
Parameters .. 78
Code.. 79
Macro Step Usage Rules... 79

Action ... 80
Editing the Action RLL .. 81
Parameters .. 81
Choosing Action Name .. 83
Choosing Action Qualifier.. 83
Setting Action Duration.. 85
Choosing the Program Label .. 86
Designing a Safe State .. 86

Jump/Label: Program Flow.. 87
Using a Jump with a Label ... 87
Using an SFC Transition Coil with a Label...................................... 88
Parameters - Edit Jump and Edit Label Dialog Boxes 88

Loop: Program Flow .. 89
Select Divergence: Program Flow.. 90
Parallel Divergence: Program Flow ... 91

Rules for Creating Parallel Divergences... 91

CHAPTER 4: Structured Text Program
Elements ..93

Elements of Structured Text ... 94
InControl User’s Guide

12 Contents
STL Extensions to IEC 61131-3 ...95
Creating an STL Program ...96
Using the Structured Text Tool and Menu Bars....................................97
STL Editing Tips...99
Entering Program Code...100
Expressions ...101

Operators ...101
Data Types ...102

Statement Types ..102
Assignment..103
BREAK ...104
CASE ..104
Comment ..105
EXIT ...106
FOR...107
Function/Procedure Call ...108
IF ..109
INCLUDE ...110
REPEAT ..110
RETURN...111
SCAN..111
WHILE..112
#pragma...113
InControl Functions and Function Blocks ..114

APPENDIX A: RLL Example Program 119
Developing an RLL Program..120

Creating a New RLL Program...120
Adding a Contact ...121
Adding a Coil ..122

Running the RLL Program..124
Monitoring Variables in the RLL Program ...125
Developing a Function ..127

Creating a New Function...127
Specifying Return Value Data Type ..128
Creating Function Parameters ...129
Entering Function Code...131
Creating the Calling Program..132
Creating Variables for the Calling Program133

Calling and Running the Function ..135
Downloading the Project ...135
Adding Variables to the Watch Window ...136
Setting the Project to Run Mode ...137
InControl User’s Guide

Contents 13
APPENDIX B: SFC Example Program139
Developing an SFC Program.. 140

Creating a New SFC Program .. 140
Adding a Step ... 141
Entering Code for the Step ... 142
Creating Variables for the SFC Program .. 143
Adding a Second Step... 144
Adding a Transition .. 145
Alternative Looping.. 147

Running the SFC Program ... 148
Downloading the SFC Program.. 148
Adding Variables to the Watch Window... 149
Single Scanning the SFC Program ... 150

APPENDIX C: STL Example Program...........153
Developing a Structured Text Program .. 154

Creating a New STL Program .. 154
Entering STL Code ... 154
Creating Variables for the STL Program .. 155

Running the STL Program ... 157
Downloading the Structured Text Program 157
Adding Variables to the Watch Window... 158
Setting the Program to Run Mode .. 159

Developing a Function Block... 160
Creating a New Function Block Type .. 161
Entering Function Block Code ... 162
Creating Function Block Parameters .. 163
Creating the Calling Program ... 165
Creating Variables for the Calling Program 166
Creating the Function Block Instances ... 168

Calling and Running the Function Block... 169
Downloading the Project .. 169
Adding Variables to the Watch Window... 170
Setting the Project to Run Mode... 172
Additional Characteristics of Function Blocks............................... 173

Developing a Function ... 173
Creating a New Function.. 174
Entering Function Code.. 174
Specifying Return Value Data Type ... 176
Creating Function Parameters .. 177
Creating the Calling Program ... 179
Creating Variables for the Calling Program 180

Calling and Running the Function ... 182
Downloading the Project .. 182
Adding Variables to the Watch Window... 183
Setting the Project to Run Mode... 184
InControl User’s Guide

14 Contents
Additional Characteristics of Functions ..185

 Index ..187

InControl™ Function and Function Block
Reference User’s Guide1

CHAPTER 1: Functions and Function Blocks .7
Extensions to IEC 61131-3 ...8
Function/Function Block Groups..9
ABORT_ALL..14
ABS...15
ACOS..16
ADD ...17
AND ..19
ARRAY_TO_STRING ..20
ASIN ...23
ATAN ..24
BCD_TO_INT ..25
CLOSEFILE..26
CONCAT ..31
COPYFILE ...32
COS...34
CTD ..35
CTU ..38
CTUD ...41
DATE_TO_REAL...45
DATE_TO_STRING ..47
DELETE..48
DELETEFILE ...50
DIV..52
EQ ...54
EXP ..55
EXPT...56
F_TRIG ...58
FIND ..59
GE ..60
GT ...61
INSERT...62
INT_TO_BCD ..64
INT_TO_REAL ...65
InControl User’s Guide

Contents 15
INT_TO_STRING ... 66
LE... 67
LEFT .. 68
LEN .. 69
LN .. 70
LOG.. 71
LT ... 72
MAX... 73
MID .. 74
MIN .. 75
MOD .. 76
MOVE .. 78
MSGWND.. 80
MUL... 82
NE .. 83
NEG ... 84
NEWFILE .. 85
NOT .. 87
OPENFILE ... 88
OR ... 90
R_TRIG.. 91
READFILE... 92
REAL_TO_DATE.. 95
REAL_TO_INT ... 97
REAL_TO_STRING.. 98
REAL_TO_TIME .. 99
REPLACE .. 100
REWINDFILE .. 102
RIGHT.. 104
ROL ... 105
ROR.. 106
SHL ... 107
SHR ... 108
SIN .. 109
SQRT...110
STRING_TO_ARRAY..111
STRING_TO_DATE...112
STRING_TO_INT ..114
STRING_TO_REAL...115
STRING_TO_TIME ...116
SUB ...117
TAN ..119
TIME_TO_REAL .. 120
InControl User’s Guide

16 Contents
TIME_TO_STRING ...121
TOF ...122
TON ..126
TP..129
TRUNC ...132
WRITEFILE..133
XOR ..136

 Index ..137

InControl™ and InTouch® Reference
User’s Guide..1

CHAPTER 1: InControl and InTouch.................5
InControl Functions Supported by InTouch..6

Installing the InControl Wizards ...6
Using the InControl Project Wizard..7
Using the Configure Runtime Engine Wizard ..8
Using the InControl Mode Wizard..9
Using the InControl Runtime Edit Wizard..10
Using the InControl Clear Faults Wizard..11
Using the InControl Runtime Add Tag Wizard12

Displaying the InControl Symbols ..12
Linking InControl Symbols to InTouch Tags14
Example Showing Linked Symbols ..15
Linking Tags on Remote Systems ...15

Using the InTouch Tag Browser ...17
Project Node/Name and InTouch ..18
InControl QuickScript Functions ..19

 Index ..21

 Glossary..23
InControl User’s Guide

Wonderware®

InControl™ Environment User’s Guide
Revision H

Last Revision: August 2004

Invensys Systems, Inc.

All rights reserved. No part of this documentation shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Invensys Systems, Inc. No copyright or patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has
been taken in the preparation of this documentation, the publisher and the
author assume no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained
herein.

The information in this documentation is subject to change without notice and
does not represent a commitment on the part of Invensys Systems, Inc. The
software described in this documentation is furnished under a license or
nondisclosure agreement. This software may be used or copied only in
accordance with the terms of these agreements.

© 2001-2004 Invensys Systems, Inc. All Rights Reserved.

Invensys Systems, Inc.
26561 Rancho Parkway South
Lake Forest, CA 92630 U.S.A.
(949) 727-3200
http://www.wonderware.com

Trademarks

All terms mentioned in this documentation that are known to be trademarks or
service marks have been appropriately capitalized. Invensys Systems, Inc.
cannot attest to the accuracy of this information. Use of a term in this
documentation should not be regarded as affecting the validity of any
trademark or service mark.

Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad, DT
Analyst, FactoryFocus, FactoryOffice, FactorySuite, FactorySuite A2,
InBatch, InControl, IndustrialRAD, IndustrialSQL Server, InTouch, InTrack,
MaintenanceSuite, MuniSuite, QI Analyst, SCADAlarm, SCADASuite,
SuiteLink, SuiteVoyager, WindowMaker, WindowViewer, Wonderware, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and
affiliates. All other brands may be trademarks of their respective owners.

Contents 3

Contents

CHAPTER 1: Getting Started with InControl..11

Overview .. 12
IEC Compliance ... 12
Programming Languages .. 12

System Requirements .. 14
Technical Support... 15

Before Contacting Wonderware ... 15
Installation Guidelines.. 16

Before You Start—InTouch and InControl....................................... 16
Before You Start—Additional Recommendations............................ 16

About the User Guides ... 17
Reading a Document .. 17
Contents - This User's Guide .. 17
Contents - I/O User's Guides .. 17
The HTML Help ... 18

Running InControl: Quickstart .. 19
Starting InControl ... 19
Creating a Project ... 19

What’s Next? .. 21

CHAPTER 2: The InControl Environment23
Working in the Development/Runtime Windows 24

Development Window .. 24
Runtime Window.. 25
Runtime Engine Icons ... 26

Using the Standard Toolbar ... 27
Using the Runtime Toolbar ... 28
Using the Debug Toolbar ... 29
Using the Menu Bar ... 30

File Commands... 30
Edit Commands ... 31
View Commands... 32
Insert Commands .. 34
Runtime Commands ... 34
Debug Commands ... 37
Tools Commands .. 38
Window Commands .. 38
Help Commands ... 39

CHAPTER 3: Setting Up Security....................41
Overview ... 42
Logging On/Off and Changing a Password ... 44
Wonderware InControl Environment User’s Guide

4 Contents
Logging On..44
Logging Off ...44
Changing a Password ..44

Managing Security ..45
Adding User Names ..45
Changing Passwords and Deleting User Names45

Locking SFC Algorithms ..47
Using Windows Security...48

CHAPTER 4: I/O Configuration49
Overview...50

Single Board Installation ...50
Multiple Board Installation ...50
Multiple Board / Different Vendor Installation51
Communicating Without a Scanner Board..51
Communicating Through SuiteLink..52
General Installation Procedure ..53

Adding/Removing Drivers ...54
Adding a Driver to the Project Window ...54
Removing or Deleting a Driver ...55

Configuring the I/O...56
Simulating I/O ..56

CHAPTER 5: Project Organization/
Management ..59

Overview ..60
Programs..60
Function Blocks...60
Functions ...61
Function/Function Block Differences ...62
Macros ..62
Variable Names..62

Managing Projects...64
Creating a Project ..64
Removing a Project ...65
Adding a Project ..65
Modifying the Project Name/Description ...65
Adding a New POU to a Project ...66
Adding an Existing POU to a Project..68
Removing/Deleting a POU ...69
Renaming a POU...69
Organizing a Project ..70

Defining Function Blocks ...72
Setting Parameters and Variables ..72
Defining an Instance..75
Wonderware InControl Environment User’s Guide

Contents 5
Entering Code for the Call.. 75
Defining Functions... 77

Setting Parameters and Variables ... 77
Specifying Data Type for a Function Return Value.......................... 79
Functions and Background Execution .. 80
Entering Code for the Call.. 80

Adding/Organizing I/O Drivers .. 82
Configuring the Runtime Engine ... 83
Accessing the Symbol Manager .. 84
Targeting the Hardware Platform ... 85
Changing Program Priority and Execution Order 86

CHAPTER 6: Defining Variables......................87
Introduction .. 89

Variable Names... 89
Local and Global Variables... 89
Variables Assigned a Constant Value ... 90
Retentive Variables ... 90
Enumerated Variables .. 91
Read-Only Variables... 91
Forced Variables ... 91
Variables and Runtime Operation... 92

Variable Data Type Groups .. 93
LREAL .. 95
REAL ... 95
DINT ... 95
INT ... 95
SINT... 96
Unsigned Integers... 96
DWORD .. 96
WORD.. 96
BYTE .. 96
BOOL .. 97
Date / Time Data Types.. 98

DT... 98
DATE .. 98
TOD .. 99
TIME ... 99
Using Date/Time-Based Data Types in Expressions 100

TMR ... 101
ANY ... 102
FILE .. 102
STRING ... 104
RTEMODE .. 104
Wonderware InControl Environment User’s Guide

6 Contents
User-Defined ...105
Data Type Conversion...106
Accessing the Symbol Manager ...107
Using the Symbol Manager Toolbar ...110
Editing Tips - Context Menus ...111
Editing Tips - Changing Member Order ...111
Editing Tips - Copy / Paste / Move Symbols112
Creating a Variable..113
Creating an Array of Variables..115
Referencing Arrays ...115
Assigning a Name to a Bit in a Variable ...115
Creating a User-Defined Data Type ...117

Custom-Designing a Data Type...117
Using the User-Defined Data Type ...118

Printing Information for Variables ..119
System Variables - General ...120
System Variables - Runtime Engine..121
Transferring Symbol Databases ..123

Symbol Exchange Between InControl Projects123
Symbol Cross-Reference Reports..123

Symbol Exchange Between InControl and InTouch...........................124
Importing/Exporting Symbols ...125
InControl CSV File Format ...126
Editing Symbol Files ...127

CHAPTER 7: Using the Factory Object Editor...
129

Defining a Factory Object...130
Installing ActiveX Controls ..131
Organizing FOEs...133
Adding FOEs to a Project ...134
Configuring Factory Objects...135
Using the Tool and Menu Bars ...136
Running and Controlling FOEs...138
Runtime Animation...138
Uploading Parameters ...139
Using Third-Party FOEs ...139
Event Handling by Factory Objects ..140

Mapping Functions to Events..140
Defining the Function..141

Referencing InControl Factory Objects ..142
Wonderware InControl Environment User’s Guide

Contents 7
CHAPTER 8: Running a Project143
Selecting Runtime Options... 144
Connecting to the Runtime Engine .. 147
Checking the Connected Node... 148
Using the Runtime Engine Monitor ... 149
Using the Runtime Engine Icons.. 150
Using the Runtime Engine Monitor Commands 150
Running/Exiting the Runtime Engine Monitor 152
Validation and Download ... 153
Validating a Project .. 154
Downloading a Project ... 156
Validating an Individual Program .. 158
Downloading an Individual Program .. 159
Project/Program Execution .. 161

Running a Project ... 161
Running an Individual Program ... 162

Stopping a Project .. 164
Stopping a Program.. 165
Project/Program Execution Order ... 166

Setting Program Order in the Execution View 166
Setting Program Priority in the Execution View 167

Debugging a Program... 168
Checking the Status Bar.. 168
Checking the Program Mode.. 168
Single Scanning a Project/Program .. 170
Using Breakpoints .. 170
Stepping a Program... 171

Monitoring Program Variables ... 174
Adding a Variable to the Watch Window 174
Adding Multiple Variables to the Watch Window.......................... 175
Removing a Variable .. 176
Adding a Table of Variables to the Watch Window........................ 177
Modifying/Forcing a Variable .. 178
Adjusting Update Rate.. 181
Pausing the Watch Window Update ... 181
Unforcing Variables .. 181
Displaying Forced Variables... 182
Using the Watch Window on a Remote Computer 182
Using the Watch Window Menu... 183
Using the Stand-Alone Watch Window.. 184
Using the Editor Window ... 187

Checking the Wonderware Logger... 188
Using the Runtime Engine System Variables..................................... 189
Wonderware InControl Environment User’s Guide

8 Contents
CHAPTER 9: InControl System Administration
191

Runtime Engine Timeline ...192
SFC Execution...193
Structured Text Program Execution ..194
RLL Execution ..194
FOE Execution ..194
Program Execution and Stepping a Program...................................195
Project/Program Execution and Single Scanning............................195

Accessing the Runtime Engine Properties ..196
Checking General Properties of the Runtime Engine197
Setting Scan Times..199
Tuning the Scan...201

Targeting CPU Utilization ...201
Examples of Normal / Skipped Scans ...203
Scan Operation and the Watchdog Timer..205
I/O Considerations...205

Checking Runtime Status Data ...207
Checking the Remote Node ..209

Using the Remote Tab ...209
Downloading Files ..210
Synchronizing Time ..211

Configuring Components..212
Using the Components Tab ...212
SuiteLink Component Configuration ..213
SuiteLink Component Status...213

Looking at Logger Data ..214
Clearing Runtime Engine Fault Mode ...215
Clearing Program Fault Mode ..216
Handling I/O and Other Hardware Errors...217
Configuring Runtime Engine Service Startup.....................................217
Handling Power Failure ..218

Using an Uninterruptible Power Supply..218
Using System and User-Defined Variables218
Retentive/Forced Variables and Power Failure219
Restarting Projects Automatically...219

Running Multiple Projects ..222
Configuring a Connection to a Remote Node223
Transferring/Archiving Project Data ..225
Using the Watch Window on the Remote Node..............................226
Configuring I/O on the Remote Node ...226

Changing System Registry Keys...227
Changing FOE Registry Setting ..227
Displaying Compiler Warnings ...228

Issuing Runtime Engine Commands...230
Value/Time/Quality Support ...231
Wonderware InControl Environment User’s Guide

Contents 9
Entering Event Viewer Settings ... 232

APPENDIX A: Reserved Words.....................233
InControl Reserved Words .. 234

APPENDIX B: Data Types237
Data Type Categories ... 238
Data Type Ranges... 240

APPENDIX C: Monitoring Data By
DDE/SuiteLink..245

Overview ... 246
Monitoring Variables from InTouch... 247
Monitoring Variables from Excel .. 248

APPENDIX D: Extensions to IEC 61131-3.....251
Data Types.. 252

Unsupported Data Types... 252
Data Type Conversion .. 252

Parameters Specific to InControl ... 253
Error Conditions... 256

APPENDIX E: Keyboard Shortcuts259
General Operations... 260
Project Window.. 261
Output Window .. 261
Project Manager ... 262
Watch Window ... 262
Program Editors.. 263
Symbol Manager .. 264
Symbol Picker .. 264

 Index..265
Wonderware InControl Environment User’s Guide

10 Contents
Wonderware InControl Environment User’s Guide

Getting Started with InControl 1
C H A P T E R 1

Getting Started with InControl

This chapter contains the software and hardware requirements for InControl,
instructions for installing and running InControl, how to get started
programming, and Technical Support information.

Contents
• Overview

• System Requirements

• Technical Support

• Installation Guidelines

• About the User Guides

• Running InControl: Quickstart

• What’s Next?
Wonderware InControl Environment User’s Guide

2 Chapter 1
Overview
InControl™ is one of the family of tools comprising the Wonderware®
FactorySuite™ of process control solutions for factory floor applications.
InControl is an open-architecture package that allows you to design, create,
test, and run application programs for controlling your process. InControl is
designed for close integration with the other FactorySuite components,
including InTouch®, InBatch, and IndustrialSQL Server.

This manual has been updated for InControl Release 7.11.

IEC Compliance
InControl incorporates the latest in international standards for designing your
automation solution. InControl is compatible with the IEC-61131-3
international programming language specification. For more information, see
the "Extensions to IEC 61131-3" appendix.

Programming Languages
Create your factory automation solution in the following graphic- and text-
based languages:

Relay Ladder Logic (RLL)

Sequential Function Chart (SFC)
Wonderware InControl Environment User’s Guide

Getting Started with InControl 3
Structured Text Language (STL)

Factory Object (FOE)

InControl is compatible with the ActiveX Server specification. The InControl
Factory Object editor is an ActiveX container, which enables you to add
ActiveX controls to a project. The current release of InControl includes several
factory objects (FOEs). The following FOEs are described in this manual:

• Use the PID InControl FOE to handle PID loop functions.

• Use the Analog Alarm InControl FOE to monitor an analog input signal
for alarm conditions.

These factory objects are described in the InControl PID and Analog Alarm
Reference Manual.

For information about additional Wonderware Factory Objects, contact your
distributor.
Wonderware InControl Environment User’s Guide

4 Chapter 1
System Requirements
The InControl software is designed to run on any IBM compatible PC. Before
installing InControl, verify that your system meets the following requirements.

InControl Project Development

• Any IBM® compatible PC with a Pentium II processor or higher
(minimum: 400MHz on a single node system, recommended: 1.2GHz or
higher).

• At least 2GB of free hard disk space.

• At least 256MB of random-access memory (RAM), 512MB of RAM is
recommended.

• SVGA display adapter (2MB RAM recommended).

• Pointing device. For example, mouse, trackball.

• The Microsoft® Windows® 2000 Professional operating system with
Service Pack 3 or higher or the Microsoft® Windows® XP Professional
operating system with Service Pack 1 or higher or Microsoft® Windows®
2003 Enterprise server.

Wonderware InControl Version 7.11 SP2 (or later) does not support the
Microsoft Windows 3.x, the Microsoft Windows for Workgroups, the
Microsoft Windows 9x or the Microsoft Windows NT operating systems.

NetDDE is not supported with InControl on Windows Server 2003 (or later)
operating systems.
Wonderware InControl Environment User’s Guide

Getting Started with InControl 5
Technical Support
Wonderware Technical support offers a variety of support options to answer
any questions about Wonderware products and their implementation. Refer to
the relevant chapters in your InControl documentation for a possible solution
to any problem that you may encounter. If you find it necessary to contact
InControl Technical Support for assistance, please have the following
information available:

Before Contacting Wonderware
Refer to the relevant chapters in your InControl documentation for a possible
solution to any problem that you may encounter. If you find it necessary to
contact InControl Technical Support for assistance, please have the following
information available:

• Software serial number and version number. Click About InControl on
the Help menu, or Configure on the Runtime menu to determine the
InControl version. You can also click About Engine Monitor on the
runtime engine monitor icon.

If InControl is not running, you can use the Windows Explorer to check
the version properties (right-click the file name) of the file ICDev.exe or
Rtengine.exe, located in the directory where InControl is installed.

If InControl is not installed, you can determine the version by checking
the file Version.txt, located in the InControl sub-directory of the
distribution compact disc.

The version number of an I/O driver appears in the title bar of the first
configuration dialog box that appears during configuration.

• Support Contract Number. Your name must be one of the three contact
names specified in the contract.

• Exact wording of system error messages encountered.

• Nature of problem and details of attempts made to solve the problem and
results.

• System configuration information, e.g., operating system, and processor,
RAM, hard disk size, etc.
Wonderware InControl Environment User’s Guide

6 Chapter 1
Installation Guidelines
For a complete description of the InControl installation procedure, see the
InControl Installation Guide.

InControl is distributed on a compact disc as a part of the FactorySuite. When
you execute the Setup program, the system does the following:

• Creates the necessary directories on your hard disk, and copies the files
into the appropriate directories.

• Sets up the program folder and icons.

• Modifies the system registry.

Before You Start—InTouch and InControl
If you intend to use InTouch with InControl on the same system, it is
recommended that you install InTouch before installing InControl. If you
install InControl first, you must run the InControl setup program again after
installing InTouch in order to install the InControl extensions. To do this, rerun
the InControl setup program. Click Add/Remove and then select InTouch
Extensions.

If you intend to use InTouch and InControl on separate systems and need to
view the InControl symbols from InTouch, install the files for the InTouch
extensions on the system where InTouch is located. Run the InControl setup
program on the InTouch system and select InTouch Extensions in the Select
Components dialog box. It is not necessary to install any other components.

Before You Start—Additional Recommendations
Additional recommendations include the following:

• Before installing InControl, log on to your Windows system using an
account with administrator privileges.

• Close any programs, particularly Wonderware applications, that are
currently running.

• Uninstall any previous versions of InControl.
Wonderware InControl Environment User’s Guide

Getting Started with InControl 7
About the User Guides
The Setup program copies the InControl user guides and the individual I/O
user guides to the Books subfolder under the FactorySuite folder.

Reading a Document
For information about how the user guides are installed, see the FactorySuite
System Administrator’s Guide. Be sure to check the Release Notes for
additional information that does not appear in this user guide. This file is
copied to your hard disk when you install InControl.

Contents - This User's Guide
For a quick introduction to the programming and runtime environments of
InControl, see "Running InControl: Quickstart" of this chapter. Complete
descriptions of the InControl environment (toolbars, menu options) are in the
"InControl Environment" chapter. For information about configuring I/O, see
the "I/O Configuration" chapter and the individual user’s guide for each I/O
driver. Detailed descriptions of the editors are given in the following chapters:

• RLL, STL, and SFC See the InControl Language Editor User Guide.

• InControl Factory Objects See the InControl PID and Analog Alarm
Reference Manual.

Contents - I/O User's Guides
For specific information about the I/O drivers such as adding and configuring
modules, devices, tags, etc., refer to the manuals for the individual drivers. The
documentation for some third-party drivers appears only in the form of the
online help that was developed by the manufacturer. For updates to this
documentation, contact your distributor or the third-party manufacturer
directly.
Wonderware InControl Environment User’s Guide

8 Chapter 1
The HTML Help
This release of InControl includes online help in the form of a compiled
HTML file. This new format provides several enhancements to the online help
utility.

• You can modify the display format.

• A "Favorites" tab allows you to bookmark locations.

• A "Locate" button identifies the current open page within the table of
contents.

• A "Zoom" button changes the size of the font for all text not in a table.

Note You can modify the display format by selecting display settings in the
Internet Options dialog box. To open this dialog box, click Options on the
Help toolbar and select Internet Options. Then click Accessibility. For the
best results in displaying the online help, do not select format settings that
ignore fonts and colors specified on Web pages. In addition, you may need to
deselect the User Style Sheet checkbox.
Wonderware InControl Environment User’s Guide

Getting Started with InControl 9
Running InControl: Quickstart

Starting InControl
To run InControl:

1. Click Start on the Windows Taskbar to display the Start menu.

2. Point to Programs\Wonderware FactorySuite.

3. Click InControl. The InControl Project Manager dialog box appears:

InControl Project Manager

Creating a Project
InControl allows you to create groups of programs, called projects. Three
projects appear in the figure above: Fileio, Seamweld, and Sfcfileio. All the
programs within a project can be executed simultaneously, and you can
coordinate them to handle your process. Before writing a program, you must
create a project.

To create a project after starting InControl:

1. On the File menu of the InControl Project Manager dialog box, click
New. The Create InControl Project dialog box appears.
Wonderware InControl Environment User’s Guide

10 Chapter 1
2. Enter a project name, select a path, and click OK. In the following figure,
Project10 has been created.

Project Manager and New Project

3. Double-click the project name to open the project in the Development
environment. The Runtime Engine Target dialog box appears.

4. Select the target hardware platform and click OK. Unless you intend to
run programs on another hardware platform, select the Windows NT/
Windows 2000 target.

To create a Quickstart program, see the example program appendix in the
language editor manual. These appendices describe how to write a simple
RLL, SFC, and Structured Text program, function, and function block.
Wonderware InControl Environment User’s Guide

Getting Started with InControl 11
What’s Next?
There is no predetermined method for doing the configuration and
programming tasks for InControl. In general, the following order of tasks is
recommended for most applications.

Order Task InControl Reference Manual Chapter
1 Add the I/O Drivers to

the Project Window
"I/O Configuration"

2 Define I/O points. Refer to the online I/O user’s guides in the
InControl Manuals directory

3 Define variables. "Defining Variables"
4 Write application

programs.
"Project Organization and Management"
"InControl Language Editors"

5 Debug applications
programs.

"Running a Project"

6 Run/Test application
programs.

"Running a Project"

7 Configure security. "Setting Up Security"
8 Design the HMI

interface.
"InControl and InTouch" Also, refer to the
InTouch User’s Guide.
Wonderware InControl Environment User’s Guide

12 Chapter 1
Wonderware InControl Environment User’s Guide

The InControl Environment 1
C H A P T E R 2

The InControl Environment

This chapter describes the InControl environment: toolbar items, menu
options, screen fields, etc.

Contents
• Working in the Development/Runtime Windows

• Using the Standard Toolbar

• Using the Runtime Toolbar

• Using the Debug Toolbar

• Using the Menu Bar
Wonderware InControl Environment User’s Guide

2 Chapter 2
Working in the Development/Runtime Windows
InControl consists of two sets of windows: the development windows, where
you create application programs, and the runtime windows, where you execute
and monitor the programs that you create. You can control the various win-
dows by hiding or showing them.

Development Window
A typical layout for the development windows is shown in the following
figure.

Development Window Screen Elements

Menu Bar (A) Displays standard functions in a text format.
Individual options are described in "Using the Menu
Bar."

Standard Toolbar (B) Displays standard functions as icons. Individual
options are described in "Using the Standard
Toolbar."

Editor Toolbar (C) Displays the tools used to add program elements to a
program. This toolbar changes, depending on the
type of program being edited.

Editor Window Title
bar (D)

Displays program name. An asterisk by a program
name indicates that the program has been modified,
but not saved, and/or is different from a copy
running in the runtime engine. If a copy of the
program is running, its mode (Run, Pause, Stopped)
is also displayed. For functions, function blocks, and
InControl factory objects that are downloaded to the
runtime engine, the mode Loaded is displayed.

Editor Window (E) Working area for the editors.
Wonderware InControl Environment User’s Guide

The InControl Environment 3
Runtime Window
A typical layout for the runtime window is shown in the following figure.

Runtime Window Screen Elements

Project Window (F) Displays project-specific functions: program and
I/O organization and execution priority. Individual
options are described in the"Project Organization
and Management" chapter.

Output Window (G) Displays messages, including error messages, from
the runtime engine, the compiler, program elements,
etc. This information is also written to the
Wonderware Logger.

Status Bar (H) Shows program information.

Program Title Bar (A) Displays program name. If a copy of the program
is running, its mode (Run, Pause, Stopped, etc.) is
also displayed. An asterisk by a program name
indicates the following:
Not connected to the runtime environment:
The program has been modified, but not saved.
Connected to the runtime environment:
The program is different from a copy running in
the runtime engine.

Runtime Toolbar (B) Displays standard runtime functions as icons.
Options are described in "Using the Runtime
Toolbar."
Wonderware InControl Environment User’s Guide

4 Chapter 2
Runtime Engine Icons
The following icons are associated with the runtime engine monitor icon and
also appear in the Status Bar:

Runtime Engine Icons

Project Window (C) Displays project-specific functions: program and
I/O organization, I/O configuration, and execution
priority. Individual options are described in
the"Project Organization and Management"
chapter.

Watch Window (D) Displays variables (symbols) and their status at
runtime. You can use the stand-alone Watch
window if you do not want to open the
Development/Runtime environment.

Output Window (E) Displays messages from the runtime engine, the
compiler, program elements, etc.

Status Bar (F) Shows program information.
Connected Node (G) Displays node to which the Development

environment is connected.
Connected RTE Icon (H) Displays the status of the runtime engine on the

node, local or remote, that is running the project.
Downloaded Project (I) Tool tip reports name of project downloaded to the

runtime engine.
Runtime Engine Monitor
Icon (J)

Monitors the status of the runtime engine on the
local node. Can be used to control project mode
and set scan times.

Icon Function
Indicates the runtime engine is in Run mode (green).

Indicates the runtime engine is in Pause mode (yellow).

Indicates the runtime engine is in Stop mode (red).

Indicates the runtime engine is in the Fault mode. Note that this icon
does not indicate a program is in the Fault mode.
Indicates a message has been sent to the Output window and the
Wonderware Logger. Icon also appears when a program enters the
Fault mode or when the RLL MSGW or Structured Text MSGWND
functions execute.
Indicates one or more variables are forced.
Wonderware InControl Environment User’s Guide

The InControl Environment 5
Using the Standard Toolbar
Several of the InControl functions can be selected from the standard toolbar,
which is shown in the following figure.

Standard Toolbar Options

Icon Menu Bar Options Function
New on the File menu. Create a new program.

Open on the File menu Open an existing program.

Save on the File menu. Save the active program.

Save All on the File
menu.

Save all the open files.

Print on the File menu. Print a program.

Project on the File
menu.

Open the Project Manager.

Cut on the Edit menu. Cut the selected object and place it on the
clipboard.

Copy on the Edit menu. Copy the selected object and place it on
the clipboard.

Paste on the Edit menu. Paste the contents of the clipboard.

WindowMaker on the
Tools menu.

Access the InTouch Window Maker.

WindowViewer on the
Tools menu.

Access the InTouch WindowViewer.
Wonderware InControl Environment User’s Guide

6 Chapter 2
Using the Runtime Toolbar
The InControl runtime commands can be selected from the Runtime Toolbar,
which is shown in the following figure.

Runtime Toolbar Commands

For information about running projects and programs, see the "Running a
Project" chapter.

Icon
Runtime Menu
Command Description
Connect / Disconnect *

Validate Project *

Download Project *

Run Project *

Pause *

Single Scan *

Stop *

Validate Program *

Download Program *

Run Program *

Pause Program *

Single Scan Program *

Stop Program *

View Menu:
Watch/Force Variables

Display Watch Window. You can use the
stand-alone Watch window if you do not
want to open the Development/ Runtime
environment.

* For a detailed description of the command's function, see "Runtime
Commands."
Wonderware InControl Environment User’s Guide

The InControl Environment 7
Using the Debug Toolbar
The InControl debug commands can be selected from the Debug Toolbar,
which is shown in the following figure.

Debug Toolbar Commands

For more information about debugging programs, see the "Running a Project"
chapter.

Icon Debug Menu Commands Description
Step Into Program. *

Step Over Program. *

Step Out Program. *

View Call Stack. *

Toggle Breakpoint. *

Clear All Breakpoints. *

* For a detailed description of the command's function, see "Debug
Commands."
Wonderware InControl Environment User’s Guide

8 Chapter 2
Using the Menu Bar
You can choose any of the InControl functions from the menu bar, which is
shown in the following figure.

File Commands
Use these commands for file operations, such as opening, closing, and printing
files, and adding or removing a program file from a project.

File Menu Commands

File Menu Command
Toolbar
Icon Function

New Create a new program file.

Open Open an existing program file.

Close n/a Close all the windows associated with
the active program file.

Save Save the active program file.

Save As n/a Save the active program under a
different name.

Save All Save all open program files and related
project information.

Project Open the Project Manager.

Add File to Project n/a Add a program file to a project.
Remove File From
Project

n/a Remove a program file from a project.

Print Print a program.

Print Xref ¹
(Print Cross References)

n/a Print program variables, where and how
often they are used in the program.
Available only for RLL and SFC
programs.

Print Setup n/a Allows you to change the printer and
printing options.

Exit n/a Close the Development environment. If
unsaved programs are open, you are
prompted to save them.

1 You can also print cross-references from the Symbol Manager. For more
information, see the "Defining Variables" chapter.
Wonderware InControl Environment User’s Guide

The InControl Environment 9
Edit Commands
The Edit menu appears only when a program is open for editing. Commands
change depending on the type of program in the currently active window.
Program-specific commands are noted. InControl indicates that a command
has been selected by placing a check by it.

Edit Menu Commands

Edit Menu
Command

Specific
Program Function

Undo All Undo the last action.
Redo RLL SFC STL Redo the previously undone action that

involves a program element.
Cut All Cut the selected object and place it on the

clipboard.
Copy All Copy the selected object and place it on

the clipboard.
Paste All Paste the contents of the clipboard.
Delete All Delete the selected object.
Select All SFC-Stp STL Select all the lines of code.
Mark Line SFC-Stp STL Use to select one or more lines of code.
Edit Element RLL SFC Open the dialog box for the selected

program element.
Step Properties SFC Open the dialog box for a Step.
Find All Find the specified text.
Find Next All Find the next occurrence of the specified

text.
Replace All Replace the specified text with new text.
Go To SFC-Stp RLL

STL
Display selected location in the program.

Go To Coil RLL Display the next occurrence of the
selected coil.

Boolean
Transition

SFC Set the default Transition for all open
SFC programs to the Boolean type
(checked), instead of the RLL type
(unchecked). This command does not
change existing Transitions.

Lock
Algorithms

SFC Use to add password protection to Step
algorithms. When an algorithm is locked,
this command is "Unlock Algorithm."

Set Bookmark SFC-Stp STL Mark one or more locations in a program
and use the Go To command to jump
between them.

Complete
Symbol

SFC-Stp STL Opens Symbol Picker for fast entry of
symbol names.

Properties FOE Display the configuration dialog boxes.
Wonderware InControl Environment User’s Guide

10 Chapter 2
View Commands
The View menu lists screen elements that you can hide or display. Elements
change depending on the type of program in the currently active window.
Program-specific elements are noted. InControl indicates that an element has
been selected by placing a check by it.

View Menu Commands

Events FOE Open the Events Editor for the FOE.
Upload
Configuration

FOE Upload parameters from the runtime
engine to the Development environment.

RLL = Relay Ladder Logic
FOE = InControl Factory Object
SFC = Sequential Function Chart
STL = Structured Text
SFC-Stp = SFC Step

View Menu
Command

Specific
Program Function

Toolbar All Display program functions as icons. The
standard toolbar is illustrated in
"Development Window."

Runtime
Toolbar

All Display runtime functions as icons;
toolbar appearsautomatically when
connecting to the runtime engine. The
runtime toolbar is illustrated in "Using
the Runtime Toolbar."

Debug Toolbar All Display the debug functions as icons.
Status Bar All Display the current mode of the runtime

engine (Running, Paused, Stopped), edit
mode (insert or append), the current
cursor location in the program currently
being edited, and help information when
the cursor is over a button.
The status bar is illustrated in "Runtime
Window."

Zoom Toolbar All Display the zoom functions as icons.
Contact/Coil
Bar

RLL Display the program elements as icons.
The Contact/Coil bar is described in
the"Using the RLL Editor" chapter.

SFC Bar SFC Display the program elements as icons.
The SFC bar is described in the
"Language Editors" chapter.

Structured Text
Toolbar

SFC-Stp
STL

Display the program elements as icons.
The Structured Text bar is described in
the "Language Editors" chapter.

Edit Menu
Command

Specific
Program Function
Wonderware InControl Environment User’s Guide

The InControl Environment 11
Factory Object
Bar

FOE Display the configuration dialog boxes.
The Factory Object bar is described in
the "Using the Factory Object Editor"
chapter.

Block Palette RLL Display the function blocks that can be
used in the program.

Project All Display the working area for the
functions in the Project window. The
Project window functions are described
in the "Project Organization and
Management" chapter.

Output All Display messages issued by the runtime
engine, the compiler, program elements,
etc. The Output Window is illustrated in
"Runtime Window."

Watch/Force
Variables

All Display selected variables and their
current values at runtime. Use to specify
new values for variables or force
variables to help in debugging a program.

Logger All Display the Wonderware Logger, which
keeps a record of runtime messages.
These messages also appear in the Output
window.

Program
Comments

RLL
SFC

Display or hide any program comments
that you enter into the program. Available
only when a program is open for editing.
For RLL programs, you must choose this
option before entering a new comment.

Symbol
Addresses

RLL
SFC

Display addresses for I/O points in RLL
programs and in SFC Actions.

Function Block
Details

RLL Display RLL function block variables.
When the program is running, the
contents of the variables are updated.

Rung Wrapping RLL Wrap RLL networks so that they can be
viewed in the editor window.

Auto Pagebreak RLL Force RLL network to fit on a page when
printing. Also operates in the editor.

All Steps SFC Display Steps by showing their names,
descriptions, associated icons, or their
program code.

Runtime
Highlighting

RLL
SFC
FOE

Enable the runtime animation for a
program. Set the update frequency for the
animation in the Runtime Engine
Properties dialog box.

View Menu
Command

Specific
Program Function
Wonderware InControl Environment User’s Guide

12 Chapter 2
Insert Commands
The Insert commands allow you to place program elements into a program
from the Menu Bar, instead of from the program toolbars. For more
information about the program elements, see the appropriate chapter for the
program type.

Runtime Commands
The Runtime commands allow you to set runtime parameters, observe runtime
status data, and to send commands directly to the runtime engine. See the
"Running a Project" chapter for more information about how these commands
are used.

Runtime Commands

Zoom RLL
SFC

Zoom in or zoom out of the program.

RLL = Relay Ladder Logic
SFC = Sequential Function Chart
FOE = InControl Factory Object
STL = Structured Text
SFC-Stp = SFC Step

Runtime
Menu
Command

Toolbar
Icon Description

Connect
Disconnect

Connect the Development environment to the
runtime engine. The engine runs continually as a
Windows service, and whether it actually
executes a project as it runs, depends on its mode
of operation (Run, Stop, Pause, etc.).
When the runtime engine is connected, the icon
is depressed and the option is “Disconnect,”
which disconnects the Development
environment from the runtime engine. If you
close (exit) the Development environment, the
runtime engine continues to run.

Configure n/a Display the Offline Runtime Engine
Properties dialog box if not connected to the
runtime engine.
Display the Online Runtime Engine Properties
dialog box if connected to the runtime engine.

Report Status n/a Examine runtime engine status data, such as
current project, time stamp, scan time, mode,
processor utilization, faulted programs, I/O
faults, etc. This data appears in the Output
window and the Wonderware Logger.

View Menu
Command

Specific
Program Function
Wonderware InControl Environment User’s Guide

The InControl Environment 13
Clear Faults n/a Set faulted programs to Pause mode, clear I/O
faults, and clear runtime engine error status bits,
such as RTEngine.ScanOverrun.

Validate Project Validate all programs in a project. All modified
programs are saved to the hard disk.

Download
Project ¹

Download all programs in a project to the
runtime engine. Modified programs are saved to
the hard disk. Programs are validated if
necessary.

Upload Project
Values

n/a For all programs, replace defined initial values
(for all local and global variables) with current
values in the runtime engine. Does not upload
I/O variables, arrays, or values that you cannot
define during configuration, e.g., the Mode
symbol. The Output window displays data that is
uploaded.

Run Project ¹ Run all programs in a project. Programs are
validated and downloaded if necessary. All
modified programs are saved to the hard disk.

Pause Pause all programs that are currently being run
by the runtime engine. The I/O continues to be
updated.

Single Scan Execute a single scan of the runtime engine. I/O
is updated, then all programs in a project that are
currently downloaded to the runtime engine are
executed one scan. Can only be done while
runtime engine is paused. See the "Running a
Project" chapter for more information.

Stop Stop all programs in a project that are currently
being run by the runtime engine. Programs are
unloaded from memory. The I/O goes to the state
defined in the configuration for each I/O board.

Validate
Program

Validate selected program. If program was
modified, it is saved to the hard disk.

Upload
Program Values

n/a For currently selected program, replace defined
initial values of local variables with current
values in the runtime engine. Does not upload
arrays, or values that you cannot define during
configuration, e.g., the Mode symbol. The
Output window displays data that is uploaded.

Download
Program

Download selected program to the runtime
engine. If program was modified, it is saved to
the hard disk.

Run Program Run the selected program. If program was
modified, it is saved to the hard disk.

Runtime
Menu
Command

Toolbar
Icon Description
Wonderware InControl Environment User’s Guide

14 Chapter 2
Pause Program Pause a program that is currently being run by
the runtime engine.The I/O continues to be
updated.

Single Scan
Program

Execute a single scan of the program. I/O is
updated and then the selected program is
executed one scan. Can only be done while the
program is paused.

Stop Program Stop a program and unload it from memory.
Other programs in the project and I/O are
unaffected.

1 Programs that have been excluded from the project load on their property
sheets are not downloaded or run.

Runtime
Menu
Command

Toolbar
Icon Description
Wonderware InControl Environment User’s Guide

The InControl Environment 15
Debug Commands
The Debug commands allow you to locate and correct errors in your code. See
the "Running a Project" chapter for more information about how these
commands are used.

Debug Commands

For more information about debugging programs, see the "Running a Project"
chapter.

Debug Menu
Commands

Toolbar
Icon Description

Step Into
Program.

With program paused, click to execute a single
line of code. If the code calls a function,
execution takes place at the first line of the
function.

Step Over
Program.

With program paused:
RLL: Execute one rung.
Structured Text: Execute one line of code.
SFC: Execute one line of code of every active
Step. All active Actions are executed
completely.
If program flow has been paused at a function
call, the call is skipped.
Structured Text and SFC programs must be
compiled with the Debug Enabled option
selected.

Step Out
Program.

With program paused, click to cause program
flow to leave a function that has been called.
Program flow resumes at the line following the
function call.

View Call
Stack.

Click to show current sequence of function calls.

Toggle
Breakpoint.

With program paused, enables/disables
breakpoint at the selected line of STL code.

Clear All
Breakpoints.

With program paused, disables all breakpoints
that have been enabled.
Wonderware InControl Environment User’s Guide

16 Chapter 2
Tools Commands
Use the Tools commands to call other programs or utilities for execution. Tools
Menu Commands

Window Commands
Use the Window commands to organize windows. The Window menu does not
appear unless you have opened an editor window.

Window Commands

Tools Menu
Command

Specific
Program Function

Symbol
Manager

All Access the Symbol Manager; use to create and
edit variables (see the "Defining Variables"
chapter).

Action Manager SFC Access the Action Manager; use to rename and
delete SFC Actions (see the "Using the SFC
Editor" chapter).

RLL Transition SFC Access the Transition Manager; use to rename
and delete SFC RLL Transitions (see the
"Using the SFC Editor" chapter).

Step Library SFC Access the Step Library; use to create, edit and
delete predefined Steps in the library.

InTouch All Display the opening menu for InTouch.
WindowMaker All Access the InTouch WindowMaker.
WindowViewer All Access the InTouch WindowViewer.
Security All Access the Security Manager; use to configure

system security (see the "Setting Up Security"
chapter).

Configure
Colors

SFC, STL,
RLL

Access the color selection dialog box; use to
specify colors for the programs in the editors
and at runtime.

Configure
RLL/SFC Font
Configure Text
Editor Font

RLL, SFC
STL

Access the font selection dialog box; use to
specify font used for the programs in the
editors and at runtime.

Window Menu Command Function
Cascade Arrange windows so they overlap.
Tile Arrange windows as non-overlapping tiles.
Arrange Icons Move icons to the bottom of the active

window.
Close All Close all editor windows. Unsaved programs

are saved.
Wonderware InControl Environment User’s Guide

The InControl Environment 17
Help Commands
Use the Help commands to display system information and help options.
Help Commands

Help Menu Command Function
InControl Help Topics Display the table of contents for system

Help.
SFC Editor Help Display Help for the SFC editor.
RLL Editor Help Display Help for the RLL editor.
Structured Text Editor Help Display Help for the Structured Text editor.
Wonderware via Internet For systems with access to the Internet,

connect to the Wonderware Web Page.
About InControl Display your serial number and the current

version of InControl.
About SFC Editor When an SFC window is active, display

current version of the SFC editor.
About RLL Editor When an RLL window is active, display

current version of the RLL editor.
About Structured Text Editor When a Structured Text window is active,

display current version of the Structured Text
editor.

About Factory Object Editor When an FOE window is active, display
current version of the FOE editor.
Wonderware InControl Environment User’s Guide

18 Chapter 2
Wonderware InControl Environment User’s Guide

Setting Up Security 19
C H A P T E R 3

Setting Up Security

This chapter describes the InControl environment: toolbar items, menu
options, screen fields, etc.

Contents
• Overview

• Logging On/Off and Changing a Password

• Managing Security

• Locking SFC Algorithms

• Using Windows Security
Wonderware InControl Environment User’s Guide

20 Chapter 3
Overview
Access to the InControl environment is restricted to help ensure that only
authorized and/or qualified people can interact with the factory process. These
three levels of security access are available: Administrator, Engineer, and
Operator. The following table shows the security level required to do the listed
tasks. A Y indicates the security level that is required to do the task.

InControl is shipped with one default user name: Administrator. The default
password is an empty string. When prompted, press Enter. The system
administrator, with the Administrator security level, assigns all users and
passwords for the system. It is highly recommended that the password be
changed for the Administrator user after you have installed the InControl
software.

WARNING! Users who have unlimited access to all the InControl
configuration tasks may be able to make inappropriate and unauthorized
changes to the system. This could cause unpredictable operation by the
controller, which can result in death or injury to personnel and/or damage to
equipment.

Be sure to change the default password for the Administrator security level and
advise all users to protect their assigned passwords.

InControl security is designed to work with the security features that are a part
of the Windows Operating System. Your systems administrator can help ensure
system integrity by configuring user Ids so that only authorized users have
access to InControl projects and the runtime engine.

See the documentation for the Windows operating system for information
about how to configure this level of security.

Task Security Level

Administrator Engineer Operator
Edit Program Y Y
Edit I/O
Configuration

Y Y

Edit Symbols Y Y
Start/Stop
Program

Y Y Y

Download
Program

Y Y

Change
Passwords

Y

Add/Delete User
Names

Y

Modify/Force
Values

Y Y
Wonderware InControl Environment User’s Guide

Setting Up Security 21
To check the security level for the user who is currently logged on, click
Security on the Tools menu. The user and security level appear in the menu, as
shown in the following figure.

Checking Security Level
Wonderware InControl Environment User’s Guide

22 Chapter 3
Logging On/Off and Changing a Password
This section describes the security tasks that are typically done by any user,
including an operator.

Logging On
To log on:

1. On the Tools menu, point to Security and click Log On. The Log On
dialog box appears.

2. Enter your name and password. Click OK.

If another user is logged on, that user is automatically logged off.

Logging Off
To log off:

1. On the Tools menu, point to Security.

2. Click Log Off xxx. If another user is logged on, this option displays the
name of the current user in the xxx field.

3. If no users are logged on, the Log Off option is unavailable.

Changing a Password
A user can change the password used with a user name for logging on.

To change the password for a user name:

1. Log on with the user name for which you are changing the password.

2. On the Tools menu, point to Security, and click Change Password. The
Change Password dialog box appears.

3. Enter the current password.

4. Enter the new password and then reenter it to verify.

5. Click OK to close the dialog box.
Wonderware InControl Environment User’s Guide

Setting Up Security 23
Managing Security
This section describes the tasks that are typically done by the system
administrator.

Immediately after you install InControl and run the program, you have the
Administrator’s security access level. You can begin doing normal tasks, e.g.,
configuration, writing and editing programs, without logging on. The system
remains in this state until you log off or make changes in security. After this,
you must log on before you can make any changes.

Adding User Names
To make changes in the security configuration, you must have access to the
Change Passwords security task.

To add a user name:

1. Log on as administrator.

2. On the Tools menu, point to Security, and click Configure Users. The
Configure Users dialog box appears.

3. Enter the new user name in the User Name field.

4. Enter the password in the Password field.

5. Select the access level in the Access field (Administrator, Engineer, or
Operator).

6. Click Require logon at startup to require users to log on when running
InControl. Note that this option affects all users, as well as the one being
added.

7. Click Add. The new user name is added to the security access level list.

Changing Passwords and Deleting User Names
To make changes in the security configuration, you must have access to the
Change Passwords security task.

To change a user’s password or security access level:

1. Log on as administrator.

2. On the Tools menu, point to Security and click Configure Users. The
Configure Users dialog box appears.

3. Click the user name that you are changing.

4. If you are changing the password, enter the new password in the
Password field.

5. If you are changing the security access level, select the new access level in
the Access field.

6. Click Update. The new information is added to the security access level
list.

7. Click OK to close the dialog box.
Wonderware InControl Environment User’s Guide

24 Chapter 3
To delete a user name:

1. Log on as administrator.

2. On the Tools menu, point to Security and click Configure Users. The
Configure Users dialog box appears.

3. Click the user name that you are deleting.

4. Click Delete. The user name is removed from the security access level list.

5. Click OK to close the dialog box.
Wonderware InControl Environment User’s Guide

Setting Up Security 25
Locking SFC Algorithms
InControl allows you to protect program code within an SFC Step from
unauthorized changes. Select the Lock Algorithms command in the Edit
menu and assign a password. To lock the SFC code, you must have access to
the Edit Program security task.

To lock SFC algorithms:

1. Open the SFC program.

2. On the Edit menu, click Lock Algorithms. The Enter Lock Password
dialog box appears.

3. Enter a password in the Password field. This field is case sensitive. Use a
password that is different from the security password.

4. Confirm the password and click OK.

5. When prompted to save and lock the active file, click Yes.

Locking the algorithms prevents unauthorized users from changing the
Structured Text code within the program’s Steps. It does not prevent them from
editing other elements in the program, e.g., Transitions, Actions, Loops, etc.,
and it does not prevent unauthorized users from deleting Steps.

WARNING! SFC Step code that has been locked cannot be changed without
the password. If you forget the password, you cannot edit the code for any Step
in the program. Be sure to keep a copy of the password in a safe place.

To unlock SFC algorithms:

1. Open the SFC program.

2. On the Edit menu, click Unlock Algorithms. The Validate Unlock
Password dialog box appears.

3. Enter the password in the Password field and click OK.

Unlocking the algorithms allows all users with access to the Edit Program
security task to edit the Structured Text within the program’s Steps.
Wonderware InControl Environment User’s Guide

26 Chapter 3
Using Windows Security
You can restrict access to a hardware unit by requiring all operators and other
users to log on to the Windows Operating System. Your Windows systems
administrator can configure user Ids so that only authorized users can run
selected programs and access selected directories. With the proper security
configuration, the runtime engine monitor menu, which allows access to the
runtime engine, is not displayed and cannot be accessed without the
appropriate password.

See the documentation for the Windows operating system for information
about how to configure this level of security.
Wonderware InControl Environment User’s Guide

I/O Configuration 27
C H A P T E R 4

I/O Configuration

This chapter describes the general approach to configuring I/O scanner boards.
For more detailed information, refer to the individual I/O Configuration
documents and the third-party user documentation that accompanies the I/O
board.

Contents
• Overview

• Adding/Removing Drivers

• Configuring the I/O

• Simulating I/O
Wonderware InControl Environment User’s Guide

28 Chapter 4
Overview
Typically, a physical board must be installed in your system for InControl to
communicate with factory floor I/O devices. The following pages give
examples of various types of scanner board installations.

Single Board Installation
The following figure illustrates a third party I/O scanner board installed in the
InControl hardware unit to scan the I/O modules.

Single Board Installation

Multiple Board Installation
Depending on the scanner board model, you may be able to install multiple
boards of the same model in the InControl hardware unit, as illustrated in the
following figure.

Multiple Board Installation
Wonderware InControl Environment User’s Guide

I/O Configuration 29
Multiple Board / Different Vendor Installation
For some scanner board models, you may be able to install boards from
different manufacturers in the InControl hardware unit, as illustrated in the
following figure.

Multiple Board/ Different Vendor Installation

Note Check with the manufacturers to determine whether their scanner
boards can operate in the same hardware unit with other scanner boards.

Communicating Without a Scanner Board
Some I/O drivers do not require a specific scanner board to be installed in the
InControl hardware unit. The following figure illustrates how an I/O driver
communicates with an intelligent I/O module directly through a serial board.

Communicating Without a Scanner Board
Wonderware InControl Environment User’s Guide

30 Chapter 4
Communicating Through SuiteLink
Unlike other I/O drivers, the SuiteLink driver requires no special hardware for
installation. The following figure shows examples of SuiteLink connections
that you can make while InControl operates as a client.

A. InControl, a server on one computer, communicates with InControl
running as a client on another computer.

B. InControl, a client on one computer, communicates with InTouch running
as a server on another computer.

C. InControl, operating as a client, communicates with InTouch running as a
server on the same computer.

D. InControl, operating as a client, communicates with any Wonderware I/O
server running on the same computer.

SuiteLink Connection Types

For more information about using SuiteLink, see the Wonderware InControl
SuiteLink User’s Guide.
Wonderware InControl Environment User’s Guide

I/O Configuration 31
General Installation Procedure
Various scanner board models and designs are available that allow
communication to discrete and analog I/O points. For a list of the third-party
I/O scanner boards currently supported by InControl, or to acquire a board,
contact your distributor or the third-party manufacturer directly.

To use an I/O driver with InControl, follow this general procedure:

Detailed information, such as memory offset, base, points, etc., about
installation and operation of an I/O board is available in the user
documentation that comes with the board. For information about configuring
an individual board, refer to the I/O user guides that are copied to the hard disk
when you install InControl.
Wonderware InControl Environment User’s Guide

32 Chapter 4
Adding/Removing Drivers
After installing the I/O board and driver, you need to add the driver to the
Project window before configuring the I/O.

Adding a Driver to the Project Window
To add a driver to the Project Window:

1. Click New on the File menu. The New dialog box appears.

2. Click the I/O Drivers tab to display the list of installed drivers.

Installed Driver List

3. Double-click the name of the driver.

4. Enter a unique name for the driver and begin configuration.

For information about configuring an individual driver, see the I/O user guides
that are copied to the hard disk when you install InControl.

For additional information about configuration, see "Configuring the I/O."

Note The Wonderware SuiteLink Client Version 2 driver is not associated
with a scanner board. However, you add it to the Project window in the same
way as you would any of the other drivers.
Wonderware InControl Environment User’s Guide

I/O Configuration 33
Removing or Deleting a Driver
When you remove or delete a driver configuration from the Project window,
any variables that are mapped to the I/O points are deleted.

To remove or delete a driver configuration from the Project
Window:

1. Select the driver and right-click as shown below.

Deleting a Driver

2. Click Remove. When the Remove dialog box appears and prompts you to
confirm, click Yes.

To delete the I/O driver configuration from the hard disk, check the Delete
Associated Files checkbox in the Remove dialog box.
Wonderware InControl Environment User’s Guide

34 Chapter 4
Configuring the I/O
Information about configuring the boards and assigning symbolic names to the
I/O points is described in the individual I/O user guides, which are copied to
the hard disk when you install InControl.

Some of the currently supported I/O drivers require a vendor-specific
configuration utility for defining the I/O configuration. Check your distribution
CD for these utilities and install them when using these drivers.

Some of the currently supported I/O drivers allow you to open and edit the I/O
configuration of a project that will run on a remote node. The driver must be
installed on both the remote node and the local node where you do the
configuration. In addition, for some drivers, you may need to install the
scanner board in the local node as well as in the remote node.

Note Several I/O drivers provide utilities that you can use to do an automatic
configuration and/or run online diagnostics. Some of these drivers require you
to use these utilities on the remote node itself. Newer drivers support remote
automatic configuration and online diagnostics. To accomplish this, these
drivers may download themselves to the remote runtime engine. In this case,
the driver enters the Loaded mode (Mode system variable = 8).

Controller cards, control bus architectures, and I/O modules all have different
timing requirements, which are often implementation specific. It is possible to
set a total scan time within InControl that is faster than these devices can
handle. For information about how to handle this situation, see "Adjusting the
Scan Time" in the "InControl System Administration" chapter.

Driver symbols, including symbols that you generate during I/O configuration,
appear in the Symbol Manager.

I/O Symbols

Simulating I/O
I/O simulation provides you the following benefits as you develop a project:

• You can define I/O tags before their associated scanner boards have been
installed.

• You can test program code that references I/O tags without actually
sending signals to I/O devices.
Wonderware InControl Environment User’s Guide

I/O Configuration 35
Many of the drivers that InControl supports have a Simulate checkbox that
you can use for purposes of I/O simulation. Often this allows you to do the
testing that you need. However, some third-party drivers may require the board
be installed, even when they are operating in a simulation mode. Other third-
party drivers may not allow you to do the testing appropriate for your
application from the simulation mode.

For an alternative form of I/O simulation, you can exclude an I/O driver from
the project download. If necessary, you can exclude all the drivers. Exclusion
allows you to test I/O tags, even for those drivers that require that the scanner
board be installed when you access the driver.

To exclude I/O tags for all I/O drivers:

1. From the Project View, right-click the I/O folder as shown below.

Excluding a Driver

2. Click Exclude.

To simulate I/O tags for a single driver:

1. From the Project View, right-click the driver.

2. Click Exclude.
Wonderware InControl Environment User’s Guide

36 Chapter 4
Wonderware InControl Environment User’s Guide

Project Organization/ Management 37
C H A P T E R 5

Project Organization/
Management

This chapter describes the organization of InControl projects in terms of the
IEC-61131-3 concept of the program organization unit (POU).

Contents
• Overview

• Managing Projects

• Defining Function Blocks

• Defining Functions

• Adding/Organizing I/O Drivers

• Configuring the Runtime Engine

• Accessing the Symbol Manager

• Targeting the Hardware Platform

• Changing Program Priority and Execution Order
Wonderware InControl Environment User’s Guide

38 Chapter 5
Overview
InControl follows the IEC 61131-3 requirement that you be able to design your
code in program organization units (POUs). In this chapter, the POUs that are
supported by InControl are described.

• Program

• Function Block

• Function

• Macro

You can design POUs in a variety of programming languages, including RLL,
Structured Text, and SFC. Since the InControl Factory Object editor is an
ActiveX container, you can also add ActiveX controls and factory objects
(FOEs) to a project. The programming languages, variables, and data types that
you can use in your code are described in the InControl Language Editors
manual . For more information about variables and data types, see the
"Defining Variables" chapter.

Programs
A program is a block of code that can be scheduled to execute automatically
every scan. Programs, which are the main mechanism for executing your
control logic, have the following characteristics:

• Programs execute automatically. That is, you do not have to call a program
for execution, as you would call a function or function block.

• A program is defined by its programming language: RLL, Structured Text,
or SFC. In addition, InControl is compatible with the ActiveX Server
specification. The InControl Factory Object editor is an ActiveX
container, which enables you to add ActiveX controls and factory objects
(FOEs) to a project.

• Programs can contain declarations of local and global variables. The
global variables can be read or written by other programs, functions, and
FOEs. With a few exceptions, the local variables can be read or written
only within the program where they are defined.

• InControl supports only program instances, as they are defined in the IEC
61131-3 specification. InControl does not support program type
definitions.

• Programs cannot contain instances of other programs.

For information about creating programs, see "Adding a New POU to a
Project."

Function Blocks
The function block POU consists of a set of programming instructions that can
be called for execution by another POU. Function blocks have the following
characteristics:
Wonderware InControl Environment User’s Guide

Project Organization/ Management 39
• InControl supports function block type definitions. You can create one or
more instances of a function block type.

• A function block type is described by its programming language.
Currently, InControl supports function block types that are written in
Structured Text, RLL, and FBD.

• Function block instances do not execute automatically. Function block
instances are executed when the code (STL, RLL, etc.) that references
them is executed.

• Function block type definitions can contain declarations of local variables
and input and output parameters.

Local variables in a function block instance maintain their values between
calls. This allows you to maintain a count, for example, each time the
function block instance is called. However, local variables cannot be read
or written by other POUs.

Input and output parameters also maintain their values between calls.
Other POUs can reference these parameters.

The ANY data type cannot be used in a function block type definition.

User-defined function blocks cannot be used in an SFC RLL Transition.

• Function block calls cannot be recursive. A function block instance can
call another function block instance for execution, but it cannot call itself.
That is, function block X cannot call itself or another function block Y,
which in turn calls function block X.

• All loop constructs will continue to execute until they have completed.

For information about creating function blocks, see "Adding a New POU to a
Project."

For information about defining the parameters and variables for a function
block, see "Defining Function Blocks."

Functions
The function POU consists of a set of programming instructions that can be
called for execution by a program, a function block, or another function.
Functions have the following characteristics:

• A function is described by its programming language. Currently,
InControl supports functions that are written in Structured Text, RLL, and
FBD.

• Functions do not execute automatically. Functions are executed when the
code (STL, RLL, etc.) that references them is executed.

• Functions can contain local variables and input and output parameters.
Memory space for local variables and parameters is allocated each time
the function is called, and deallocated when the function finishes
execution. Variables only exist for the time that the function is executing
and cannot be read or written by other POUs.

• Functions can have an optional return value that contains the result of the
function after execution.
Wonderware InControl Environment User’s Guide

40 Chapter 5
• Function calls cannot be recursive. A function can call another function
for execution, but it cannot call itself. That is, function X cannot call itself
or another function Y, which in turn calls function X.

• User-defined function blocks cannot be used in an SFC RLL Transition.

• All loop constructs will continue to execute until they have completed.

For information about creating functions, see "Adding a New POU to a
Project."

For information about defining the parameters and variables for a function, see
"Defining Functions."

Function/Function Block Differences
Three fundamental characteristics differentiate the function block and the
function:

• You can create one or more instances of a function block type.

• Parameters and local variables are stored differently.

For function block instances: local variables maintain their values between

calls.

For functions: memory space for local variables and parameters is
allocated each time the function is called, and deallocated when the
function finishes execution. Variables only exist for the time that the
function is executing.

• Functions can have an optional return value that contains the result of the
function after execution.

Macros
The macro is a specialized POU that provides a means of including one SFC,
the child, for execution from a Step in another SFC, the parent. The macro,
which represents an enhancement to IEC-61131-3, has the following
characteristics:

• Macros are executed automatically, inline within the parent SFC.

• A macro SFC cannot include itself or its parent SFC.

• You can nest SFCs. That is, one macro SFC can call another macro SFC.

• You can call the same macro SFC from multiple points, termed Macro
Steps, within an SFC, and from multiple programs.

• Macros can have local variables.

For information about creating macros, see "Adding a New POU to a Project."

Variable Names
Use only alphanumeric characters and the underscore character for the name of
a POU. Names can begin with an underscore or an alphabetic character, but not
a numeric character. The maximum length of a name is as follows.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 41
• I/O boards: 31 characters.

• Programs, Functions, Function Blocks: 31 characters.

• Projects: 255 characters.

• Other symbols: the recommended maximum length is 100 characters.
Wonderware InControl Environment User’s Guide

42 Chapter 5
Managing Projects
All POUs that you create appear in the Project window. This window has two
tabs. The Project View tab displays the programs, function block types,
functions, and macros that are associated with a project. You can also handle
symbol and I/O management and runtime engine configuration for a project
through the Project View tab. The Execution View tab displays the priority
level for programs (Normal Scan, Low Priority) and the order in which
programs are executed.

The Project Window

Creating a Project
Before you can create the set of POUs, symbols, and related configuration files
that handle execution of the application control logic, you must create a
project.

To create a project after starting InControl:

1. On the File menu, click Project. The Project Manager appears.

2. On the File menu of the Project Manager, click New. The Create
InControl Project dialog box appears.

3. Enter a project name using the Windows naming conventions, select a
path, and click OK. A directory with this name is created on the hard disk
and the new project is added to the list of InControl projects.

4. Double-click the project name to open the project in the Development
environment. If your version of InControl supports more than one runtime
engine target, the Runtime Engine Target dialog box appears.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 43
5. Select the target hardware platform and click OK. Unless you intend to
run programs on another hardware platform, select the Windows 2000 /
Windows XP / Windows 2003 target.

The project that you created appears in the Project window of the
Development environment.

Note You can convert a project that was developed for one target to run on
another target. However, some I/O boards may not convert if they do not
support the target operating system. See "Targeting the Hardware Platform." In
addition to converting projects, you can insert program files, which are
developed in a project for one target, into a project with a different target.

Removing a Project
To remove or delete a project, you must display the Project Manager.

Note You can also delete individual project files, such as programs or I/O
drivers, within the InControl environment. See "Removing/Deleting a POU."

To remove or delete a project:

1. On the File menu, click Project. The Project Manager appears.

2. Select the project, and on the File menu of the Project Manager, click
Delete. When the Delete dialog box appears and prompts you to confirm,
click Yes.

Note that removing a project does not delete files from the hard disk. To
delete all the files associated with the project, check the Delete Associated
Files checkbox in the Delete dialog box.

Adding a Project
You can add a project that you have removed from the Project Manager.

Note You can add a project (and its associated program files) only if you have
not deleted it from the hard disk.

To add a project:

1. On the File menu, click Project. The Project Manager appears.

2. On the File menu of the Project Manager, click Search. The Browse For
Folder dialog box appears.

3. Select the project and click OK. The project is added to the project list.

Modifying the Project Name/Description
To modify the name or description for a project:

1. On the File menu, click Project. The Project Manager appears.
Wonderware InControl Environment User’s Guide

44 Chapter 5
2. Select the project, and on the File menu of the Project Manager, click
Properties. The Modify InControl Project dialog box appears.

3. Enter a new description or project name, then click OK. The new
description appears in the read-only Description field of the InControl
Projects dialog box.

Adding a New POU to a Project
When you add programs, function block types, functions, or macros to a
project, these items appear under their respective folders in the Project View.
To organize the components of your project, you can create subfolders as
needed. See "Organizing a Project."

To add a new POU to a project:

1. On the File menu, click New

2. Select the Programs tab in the New dialog box.

3. Select program type (Factory Object, RLL, SFC, Structured Text), and
POU type (Program, Function, Function Block, Macro).

4. Choose a name (up to 31 characters).

5. If you are adding a new function block or function, you need to define
parameters and variables. See "Defining Function Blocks" and "Defining
Functions."

A new POU appears in a project, open and ready to edit. Double-click a POU
that is closed in order to edit it.

Select an individual POU and right-click to do the following:

• Open Start an edit session.

• Symbols Access the Symbol Manager.

• Remove Remove the POU from the Project View.

• Exclude Exclude the POU from the project when you download the
project. You can still download excluded POUs individually. This feature
is useful for adding simulation code to your project. When a POU is
excluded, the icon for the POU is dimmed.

• Validate Validate the code (check syntax).

• Download Load the POU into the runtime engine.

• Run Execute the POU in the runtime engine.

• Pause Suspend execution of the POU.

• Stop Stop execution of the POU and unload it from the runtime engine.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 45
• Properties Check the following code properties:

Enter descriptive information about the POU in the Properties dialog box.

Enable debugging.

Exclude the POU from the project, described above.

Check these dates: date the POU was modified, date the POU was
compiled, and date the POU in the runtime engine was compiled.

InControl indicates the mode of a program in the Project View. The following
figure shows these program modes: PID4 is running; RLL5 is stopped; SFC10
is paused (the asterisk indicates that the program has been modified and not
saved, or is different from the copy in the runtime engine). Note that if mode is
not shown, the program is either stopped, not loaded in the runtime engine, the
Development environment is not connected to the runtime engine, or the
project is different from the copy in the runtime engine.

InControl indicates that functions and function blocks are loaded in the
runtime engine by displaying their mode in the Project View as "Loaded."
Wonderware InControl Environment User’s Guide

46 Chapter 5
Adding an Existing POU to a Project
To add an existing POU to a project:

1. On the Insert menu, click Files into Project. The Insert Files Into
Project dialog box appears.

2. Locate the POU that you want to add.

3. Click OK. The POU is added to the Project View.

Note All POUs are inserted under the Programs folder of the Project window.
You must move functions to the Functions folder, function block types to the
Function Block folder, and macros to the Macros folder for the project to
compile correctly.

You can add non-InControl program files to the project, such as, a Readme.txt
file.

Double-clicking Readme.txt in the Project View opens the Windows Notepad
utility and displays the Readme.txt file.

If you add an executable file, such as the Windows Wordpad utility
(wordpad.exe), double-click the file name in the Project View to run the
executable file.

Note You can add a file to a project by dragging and dropping it from any
application that supports the Drag and Drop feature, such as the Windows
Explorer.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 47
Removing/Deleting a POU
To remove or delete a POU from a project, you must display the Program
View.

To remove or delete a POU from a project:

1. Display the Project View.

2. Select the POU and right-click as shown below.

3. Click Remove. When the Remove dialog box appears and prompts you to
confirm, click Yes.

Note that removing a POU does not delete files from the hard disk. To
delete the associated files, check the Delete Associated Files checkbox in
the Remove dialog box.

Renaming a POU
To rename a POU, use the Save As option on the File menu.

To rename a POU:

1. Display the Project View.

2. Select the POU.

3. Click Save As on the File menu.

4. Choose a name (up to 31 characters). A message box prompts you to
confirm whether to add the POU to the project.

Note The original POU remains in the project after you save it with a
different name.
Wonderware InControl Environment User’s Guide

48 Chapter 5
Organizing a Project
The InControl Project window is a versatile tool that allows you easy
organization for the components of your project.

The following figure shows the default folder arrangement in a Project window
of a new project.

Project Window - Default Organization

When you add POUs and I/O configurations the new objects appear in the
appropriate folders. The default organization is to group together all the I/O
configurations, all the programs, all the function block types, etc. In the
following figure, the I/O folder displays two I/O configurations, the Programs
folder displays two programs, the Functions folder displays one function, the
Function Blocks folder displays two function block types, and the Macros
folder displays one macro.

Project Window - Folder Organization
Wonderware InControl Environment User’s Guide

Project Organization/ Management 49
If you want to group POUs and I/O by unit areas of the factory floor, you can
right-click the project name and create a new folder. Right-click the new folder
and add the POUs and I/O configurations that are appropriate for that factory
unit. In the following figure, two I/O configurations, two programs, one
function, two function block types, and one macro appear under the
Conveyor_A folder. The other factory unit, a boiler with a folder called
Boiler_East_Wing, is represented by one I/O configuration and two programs.

Project Window - Area Organization

You can drag existing POUs and I/O configurations to folders if you want to
rearrange the project organization. If the appropriate subfolder does not exist
(you drag a function into a folder that does not contain a Function folder
already), InControl creates the subfolder automatically.

You can rename any of the folders, including the standard project folders
(Programs, Functions, Macros, etc.).
Wonderware InControl Environment User’s Guide

50 Chapter 5
Defining Function Blocks
After you create a new function block type, you need to specify its parameters
and variables.

See the InControl Language Editors manual for examples that show how to
develop user-defined function blocks.

Setting Parameters and Variables
You define the input and output parameters and variables for a function block
type in the Symbol Manager. Function block local variables are local to the
function block instance and cannot be referenced by any other POU. Within the
function block instance, input parameters are read only. Output parameters
must be assigned values through an assignment statement.

Note these guidelines when you develop a function block in RLL.

• You can define up to eight input or input-output (InOut) parameters. It is
recommended that you define a Boolean output (the .ENO) as the first
output parameter.

• You can define up to eight output parameters. It is recommended that you
define a Boolean output (the .ENO) as the first output parameter.

• In RLL, function blocks run on every scan, regardles of the state of the
rung input. It is recommended that you create a Boolean input (the .EN)
and output (the .ENO) as the first parameters to manage the rung logic.
Assign the value of the .ENO to the .EN.

To define a parameter or variable for a function block type:

1. Add a function block type to the project. For information about creating
function blocks, see "Adding a New POU to a Project."

2. On the Tools menu, click Symbol Manager.

3. Click the function block type to select it as shown in the following figure.

Selecting Function Block Type
Wonderware InControl Environment User’s Guide

Project Organization/ Management 51
4. Click New on the Symbol Manager toolbar.
Wonderware InControl Environment User’s Guide

52 Chapter 5
The Symbol Properties dialog box appears.

Function Block - Symbol Properties

5. Enter the name of the parameter or variable into the Name field. Use only
alphanumeric characters and the underscore character.

6. Select the data type in the Type field.

7. Enter the optional description into the Description field.

8. Choose variable or type of symbol in the In/Out field, as shown below.

9. If the parameter or variable requires an initial value, enter the value into
the Initial Value field.

10. Click the Retentive Value checkbox if the variable is to retain its value in
the event of a power loss.

InControl periodically saves retentive variables to the hard disk. The
default frequency is zero. This interval is configurable and you can set it in
the Runtime Engine Properties dialog box, described in "Setting Scan
Times" of the "InControl System Administration" chapter.

11. If you are defining the parameter or variable as an array, check the Array
checkbox. This causes the Lower Bound and Upper Bound fields to
become active. Enter the lower and upper values in the appropriate fields.

12. Click Add Local to complete the definition for the parameter or variable.

Note You can change the order of the parameters in an existing function
block. Access the function block type in the Symbol Manager. Right-click the
parameter and click the Decrease Address or Increase Address options.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 53
Defining an Instance
You define an instance of a function block type in the Symbol Manager.

To define an instance of a function block:

1. Access the Symbol Manager.

2. Select the appropriate scope, for example, global, an individual program,
another function block, etc.

3. Click New on the Symbol Manager toolbar.

The Symbol Properties dialog box appears.

4. Enter the name of the instance into the Name field. Use only alphanumeric
characters and the underscore character.

5. Select the function block type in the Type field.

Selecting Function Block Type

6. Enter the optional description into the Description field.

7. Since all the remaining properties are defined by the function block type,
click Add Local or Add Global to complete the definition for the
instance.

Entering Code for the Call
You can call a function block instance for execution from any other POU that
is written in the Structured Text language. This section gives two examples of
the syntax you can use.
<FB_Instance> (<Parameter1Value>, <Parameter2Value>,

<Parameter3Value>,..);<result> :=
(<FB_Instance.ParameterOut>);
Wonderware InControl Environment User’s Guide

54 Chapter 5
For example, you have defined a function block type called CALC that does a
calculation based on two input parameters called IN1 and IN2 and that writes
to one output parameter called OUT. You create an instance called CALC1 and
you want to write the result to a variable called CALCRESULT. The syntax is
the following:

CALC1 (IN1:= 55.55,IN2:=66.66);CALCRESULT := CALC1.OUT;

The following code gives the same result:
<FB_Instance.ParameterIn1> := <Value1>;

<FB_Instance.ParameterIn2> := <Value2>;

<FB_Instance.ParameterIn3> := <Value3>;

<FB_Instance> ();

<result> := (<FB_Instance.ParameterOut>);

Using the same example given above, the syntax is the following:
CALC1.IN1:= 55.55

CALC1.IN2:= 66.66

CALC ();

CALCRESULT := CALC1.OUT;
Wonderware InControl Environment User’s Guide

Project Organization/ Management 55
Defining Functions
After you create a new function, you need to specify its parameters and
variables. If the function returns a value, you need to specify its data type.

See the InControl Language Editors manual for examples that show how to
develop user-defined functions.

Setting Parameters and Variables
You define the input and output parameters and variables for a function in the
Symbol Manager. Function variables are local to the function and cannot be
referenced by any other POU, except within the context of the function call.
Within the function, input parameters are read only. Output parameters must be
assigned values through an assignment statement.

Note these guidelines when you develop a function in RLL.

• You can define up to seven input or input-output (InOut) parameters. The
editor always adds an eighth input by default, which acts as the EN input.

• You can define up to seven output parameters. The editor always adds an
eighth output by default, which acts as the ENO output.

• If you define a Boolean output parameter, the state of this output
determines the output state of the rung, which contains the function, in the
calling program.

To define a parameter or variable for a function:

1. Add a function to the project. For information about creating functions,
see "Adding a New POU to a Project."

2. On the Tools menu, click Symbol Manager.

3. Click the function to select it as shown in the following figure.

Selecting Function
Wonderware InControl Environment User’s Guide

56 Chapter 5
4. Click New on the Symbol Manager toolbar.

The Symbol Properties dialog box appears.

Function - Symbol Properties

5. Enter the name of the parameter or variable into the Name field. Use only
alphanumeric characters and the underscore character.

6. Select the data type in the Type field.

7. Enter the optional description into the Description field.

8. Choose variable or type of symbol in the In/Out field, as shown below.

9. If the parameter or variable requires an initial value, enter the value into
the Initial Value field.

10. If you are defining the parameter or variable as an array, check the Array
checkbox. This causes the Lower Bound and Upper Bound fields to
become active. Enter the lower and upper values in the appropriate fields.

11. Click Add Local to complete the definition for the parameter or variable.

Note You can change the order of the parameters in an existing function.
Access the function in the Symbol Manager. Right-click the parameter and
click the Decrease Address or Increase Address options.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 57
Specifying Data Type for a Function Return Value
You specify the return type for a function in the Symbol Manager.

To specify the return data type for a function:

1. Access the Symbol Manager.

2. Right-click the function and select Properties. The Symbol Properties
dialog box appears.

Function – Symbol Properties Return Value

3. For a function, select the data type in the Return Type field. For a
procedure, select None as the Return Type.

Functions only return simple data types. They cannot return arrays, structures,
or function blocks.

4. Select Execute in Background if appropriate, then click OK. For
information about background execution, see "Functions and Background
Execution."
Wonderware InControl Environment User’s Guide

58 Chapter 5
Functions and Background Execution
For any functions that require a significant period of time to execute it is
recommended that you configure them to run in background when possible.
When a function runs in background, the scan is not delayed while the function
completes execution.

• For a function call made from an STL program:
As the function runs in background, the next program in the project's order
of execution runs. If the function has completed by the next scan, program
flow continues at the line of code following the function call. Otherwise,
execution for the calling program continues to wait for the completion of
the function. No other lines of code in the program are executed, and the
next program in the project's order of execution continues.

• For a function call made from an RLL program:
As the function runs in background, no more logic is solved on the rung
with the function call. Logic on the following rungs is solved, however. In
the next scan, logic on all rungs preceding the rung with the function call
is solved. If the function has completed, the remaining logic on the rung
with the function call is solved. Otherwise, program flow continues on the
subsequent rungs.

Within a program, only one function can be running in background at a time. If
more than one background function call is made from a program, the
subsequent functions wait until the function that is executing has finished.

When a function runs in background, program flow is not paused at
breakpoints. All loop-type constructs operate as if they have a terminating
End-No-Wait.

Entering Code for the Call
You can call a function for execution from any other POU that is written in the
Structured Text language.

A function that does not return a value operates like a procedure. The format
for this type of function is the following:
<Function> (<Parameter1Value>, <Parameter2Value>,

<Parameter3Value>,..);

For example, you have defined a function called CALC that does a calculation
based on two input parameters called IN1 and IN2 and that writes to one output
parameter called OUT. The syntax is the following:
CALC (IN1:= 55.55,IN2:= 66.66, OUT:= CALCRESULT);

You can specify a return value for a function. A function that returns a value
operates as a true function and you use it on the right side of an Assignment
statement. The format for this type of function is the following:
<result> := <Function> (<Parameter1Value>,

<Parameter2Value>,..);

Set the return value by including code in the function that assigns the value to
the function name.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 59
For example, you have defined a function called CALC that does a calculation
based on two input parameters called IN1 and IN2 and that returns a value of
data type LREAL. The syntax of the function call is the following:
CALCRESULT := CALC (IN1:= 55.55,IN2:= 66.66);

The actual code in the function is the following:
CALC := IN1*IN2;

Note how you set the return value by placing the function name CALC on the
left side of the Assignment statement.

Alternative forms for the syntax of a function call allow you to use assignment
statements for parameters, or to list variables or literal values for parameters in
the order defined by their addresses in the Symbol Manager.

In the following syntax, parameters receive their values through assignment
statements. In this form, parameters can be in any order.
(<Parameter1:= Value1>, <Parameter2:= Value2>,

<Parameter3:= Value3>,...);

In the following example, parameters appear in any order.
CALC (OUT:= CALCRESULT, IN2:= 5.5,IN1:= 6.6);

In the following syntax, parameters receive their values according to the
parameter order in the Symbol Manager.
(<Value1>, <Value2>, <Value3>,...);

In the following examples, parameter order is fixed.
CALC (55.55, 66.66, CALCRESULT);

You must enter all parameters. You cannot skip a parameter by using an extra
comma. You must use the same syntax for all parameters used in the function.
That is, do not use an assignment statement for one parameter and a variable or
literal value for another.
Wonderware InControl Environment User’s Guide

60 Chapter 5
Adding/Organizing I/O Drivers
When you add I/O drivers to the project, the drivers appear under the I/O folder
in the Project View. To organize the drivers, you can create folders for various
drivers under the I/O folder and place drivers within them as needed. Click the
I/O folder and right-click. Select New Folder to create a folder under the I/O
folder.

To add an I/O Driver to a project:

1. Click New on the File menu.

2. Select the I/O Drivers tab in the New dialog box.

3. Select the I/O Driver and click OK.

For detailed instructions that describe adding or removing drivers, see the "I/O
Configuration" chapter.

Double-click an I/O driver to configure it. Select a driver and right-click to
enter descriptive information about the driver in the Properties dialog box.

You can also right-click to configure or remove a driver, or to exclude it from
the project when you download the project.

When you exclude an I/O driver, the I/O symbols are downloaded, but the
driver does not execute. This feature is useful for simulating I/O without
having I/O hardware physically present.

Note Removing an I/O configuration does not delete files from the hard disk.
To delete the I/O driver configuration, check the Delete Associated Files
checkbox in the Remove dialog box.
When you remove or delete an I/O driver configuration from the Project View,
any variables that are mapped to the I/O points are deleted.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 61
Configuring the Runtime Engine
You can set scan time and other runtime parameters, such as automatic startup
for the runtime engine from the Project View. Double-click the RTEngine icon
in the Project View and the dialog box for the runtime engine appears.

Right-click the RTEngine icon in the Project View to do the following:

• Connect/Disconnect Connect/disconnect the Development environment
and the runtime engine.

• Configure Display the Offline Runtime Engine Properties dialog box if
the Development environment not connected to the runtime engine.
Display the Online Runtime Engine Properties dialog box if the
Development environment is connected to the runtime engine.

• Report Status Examine runtime engine status data, such as current
project, time stamp, scan time, mode, processor utilization, faulted
programs, I/O faults, etc. This data appears in the Output window and the
Wonderware Logger.

• Clear Faults Set faulted programs to Pause mode, clear I/O faults, and
clear runtime engine error status bits, such as RTEngine.ScanOverrun.

• Pause Set the runtime engine to the Pause mode.

• Single Scan Execute a single scan of the runtime engine.

• Stop Set the runtime engine to the Stop mode.

• Properties Check the following code properties:

Enter descriptive information about the runtime engine in the Properties
dialog box.

Change the runtime engine target. This is useful when you develop and test a
project on a computer using the Windows operating system but intend to
download and run the project on a computer that uses another operating
system.

Check these dates: date the runtime engine was modified, and date that a
project was downloaded to the runtime engine.

For detailed information about the runtime engine, see these chapters:

"Running a Project" and "InControl System Administration."
Wonderware InControl Environment User’s Guide

62 Chapter 5
Accessing the Symbol Manager
Double-click the Symbols icon in the Project View to open the Symbol
Manager. You create or edit POU variables in the Symbol Manager. Right-
click the Symbols icon to enter descriptive information about your symbol
configuration in the Properties dialog box. The Symbol Manager is shown in
the following figure.

For detailed information about the Symbol Manager, see the "Defining
Variables" chapter.
Wonderware InControl Environment User’s Guide

Project Organization/ Management 63
Targeting the Hardware Platform
Some versions of InControl support multiple runtime hardware platforms. If
you have purchased one of these versions, then when you create a new project,
InControl prompts you to select the platform (the target) where you intend to
run the project. This allows you to develop a project in the Windows
environment, and then download and run the project on any of several
hardware platforms. You can convert a project that was developed for one
target to run on another target.

To change the target runtime engine:

1. Select the runtime engine icon in the Project View and right-click. The
Properties dialog box for the runtime engine appears.

Targeting the Hardware Platform

2. The current target is shown in the Target field. Select the new target and
click OK.

Note Some I/O boards may not convert if they do not support the target
operating system. After the conversion, these boards are dimmed in the Project
window.
Wonderware InControl Environment User’s Guide

64 Chapter 5
Changing Program Priority and Execution
Order

Use the Execution View to specify the priority level for programs (Normal
Scan, Low Priority), and to change the order within the scan in which they are
executed. If you do not set the order, programs are executed in the order in
which you create them.

For more information about priority level, see "Runtime Engine Timeline" in
the InControl System Administration chapter.

For detailed information about changing priority and execution order, see
"Project/Program Execution Order" in the Running a Project chapter.
Wonderware InControl Environment User’s Guide

Defining Variables 65
C H A P T E R 6

Defining Variables

This chapter describes how to define the symbols that you use in your
application program.

Contents
• Introduction

• Variable Data Type Groups

• LREAL

• REAL

• DINT

• INT

• SINT

• Unsigned Integers

• DWORD

• WORD

• BYTE

• BOOL

• Date / Time Data Types

• TMR

• ANY

• FILE

• STRING

• RTEMODE

• User-Defined

• Data Type Conversion

• Accessing the Symbol Manager

• Using the Symbol Manager Toolbar

• Editing Tips - Context Menus

• Editing Tips - Changing Member Order
Wonderware InControl Environment User’s Guide

66 Chapter 6
• Editing Tips - Copy / Paste / Move Symbols

• Creating a Variable

• Creating an Array of Variables

• Referencing Arrays

• Assigning a Name to a Bit in a Variable

• Creating a User-Defined Data Type

• Printing Information for Variables

• System Variables - General

• System Variables - Runtime Engine

• Transferring Symbol Databases

• Symbol Exchange Between InControl and InTouch
Wonderware InControl Environment User’s Guide

Defining Variables 67
Introduction
The InControl programming tools allow you to define and use variables, which
are internal memory locations that contain project data. The content of the
information is defined by the data type and can be real numbers, integers,
strings of characters, etc. Use the Symbol Manager to define a variable, assign
it a symbolic name and data type, and designate its scope as local or global.

Variable Names
Use only alphanumeric characters and the underscore character for the name of
a variable. Names can begin with an underscore or an alphabetic character, but
not a numeric character. The recommended maximum length of a variable
name is 100 characters.

Local and Global Variables
Variables can be local or global in scope.

• Global variable A global variable can be used and referenced within a
project by all programs, including InControl factory objects (FOEs). You
can use global variables within SuiteLink and DDE operations, and you
can reference I/O points as global variables.

• Local variable A local variable is used and referenced only within the
program in which it is defined. Except for local variables defined for
functions, you can reference a local variable through SuiteLink and DDE
operations. To help coordinate program execution, you can reference the
following local system variables in other programs:

Mode: Contains the current mode of a program. Use this syntax to
reference Mode:
<program name> . Mode

FOE variables: FOEs and other ActiveX controls add local variables
automatically when they are installed. You cannot edit these variables
from within the Symbol Manager. Use this syntax to reference FOE
variables:
<FOE name> . <variable name>

For information about using DDE to reference local and global variables, see
the "Monitoring Data By DDE/SuiteLink" appendix.

For information about using SuiteLink to reference local and global variables,
see the Wonderware InControl SuiteLink User’s Guide.

In contrast to variables, which are internal memory locations, I/O points are
external locations, associated with physical points. Because you can reference
them in a program just like variables, I/O points appear in the Symbol Manager
and are listed under the I/O group. I/O points are scoped like global variables:
you can reference them from any program, and you can use them in SuiteLink
operations. You cannot edit an I/O point from within the Symbol Manager.
Wonderware InControl Environment User’s Guide

68 Chapter 6
Variables Assigned a Constant Value
Assign a constant value to a variable when you need a variable, such as pi (p),
that has an unchanging literal value to be used in your program. For some
variables, such as a recipe ingredient, you may want to test a number of values
until you determine the one to use for the variable. In this case, you can access
the Symbol Properties dialog box for the variable, assign an initial value
based on your tests, and then check the Constant Value checkbox.

• If you add a variable that has been defined as a constant to the Watch
window, the variable appears as a dimmed value. You cannot modify the
variable in the Watch window.

• You cannot directly monitor a variable, which has a constant value, from
an external application, such as InTouch. Assign the value of the variable
to another variable that is not constant, and then monitor the second
variable.

Check the Constant Value checkbox on a variable's Symbol Properties
dialog box to if you want to define a named variable and give it a constant
value. The Symbol Properties dialog box is described in "Creating a
Variable."

Retentive Variables
You can define a variable as retentive if you want the option of backing up the
value of a variable to the hard disk. InControl provides three ways by which
you can specify for the backup to occur.

• If the runtime engine shuts down during a power failure, the value of a
retentive variable is copied to the hard disk. Note that the values of any
variables that have been forced are also saved during a power failure.

The values of retentive and forced variables are not saved unless you are
using an intelligent UPS with the system and you have configured it to
signal InControl of the power failure. For more information about
preparing for power failures, see "Handling Power Failure" in the
"InControl System Administration" chapter.

• You can configure InControl to save retentive and forced variables to the
hard disk periodically. The default frequency of zero disables this feature.
You can change it in the Runtime Engine Properties dialog box,
described in "Setting Scan Times" of the "InControl System
Administration" chapter.

Take into account the number of retentive variables in your project when
you choose the frequency of the update. A short update interval can
degrade the performance of your system when a large number of the
variables are marked as retentive.

• You can design code in a program to save the value of retentive and forced
variables on demand. For a forced variable, both the value and the forced
state are saved to the hard disk. Use the following syntax:

RTEngine.ExecProjectCommand (SaveRetentive);
Wonderware InControl Environment User’s Guide

Defining Variables 69
The values are only restored when the runtime engine is configured to restart
automatically (Last, Pause, Run mode) after a system reboot. For more
information, see "Restarting Projects Automatically" in the "InControl System
Administration" chapter.

Check the Retentive Value checkbox on a variable's Symbol Properties
dialog box to if you want the option of backing up the value of a variable to the
hard disk. The Symbol Properties dialog box is described in "Creating a
Variable."

For more information about the behavior of variables at runtime, see "Variables
and Runtime Operation."

Enumerated Variables
An enumerated variable is a type of data structure, the members of which are a
set of DINT data types. Use an enumeration when you need to define a group
of named constants. When logic that contains the constant is solved, the value
of the constant is the initial value, which you assign when you define the
constant.

For a simple Structured Text example that uses an enumeration, see the CASE
statement in the Structured Text Language chapter. For instructions that
explain how to define an enumeration, see Creating a User-Defined Data
Type."

Read-Only Variables
Some variables, (including those belonging to objects such as the runtime
engine, FOEs, programs, and function blocks), are read only at runtime. This
means that the value of the variable is determined by the object. Any changes
that you make at runtime through the Watch window or a program, for
example, are always overwritten by the object.

For more information about the behavior of variables at runtime, see "Variables
and Runtime Operation."

Forced Variables
At runtime, you can force the value of a variable to a particular value. This
means that the value does not change as the program runs until you force it to a
new value or unforce it.

For more information about the behavior of variables at runtime, see "Variables
and Runtime Operation."
Wonderware InControl Environment User’s Guide

70 Chapter 6
Variables and Runtime Operation
This section describes the behavior of variables at runtime.

Read-Only and Read-Write Variables

Values of read-only variables are determined by their associated object, such as
an FOE or the runtime engine, for example. This means that you cannot change
read-only variables through the Watch window, an HMI, a program, through
the Symbol Manager, or a program editor. If you do attempt to change a read-
only variable at runtime, any value that you write will be overwritten.

Retentive Variables

If you redownload an object (such as an FOE or program) after a system restart
that caused the values of retentive variables to be used, then the retentive
values will be overwritten by any initial values that you defined when you
created the object.

For example, you define the setpoint of a PID to be 50 degrees. During
operation by the PID, the setpoint has been changed to 30 degrees. If you have
provided for the back-up of retentive variables (described in "Retentive
Variables" then following a power cycle, the value of 30 degrees is used for the
setpoint. If you later redownload the PID, however, 50 degrees is used for the
setpoint.

Uploadable Variables

If you upload values from an object (such as a PID) at runtime, then the
uploaded values overwrite the ones used when you initially created the object.
If you later redownload the object, the values downloaded with the object are
the ones that were uploaded previously.

You can mark uploadable values as being retentive. In the PID setpoint
example above, this means that the setpoint will be 30 degrees, not 50 degrees,
following a redownload of the PID. This assumes that you have provided for
the backup of retentive variables as described in "Retentive Variables."

Forced Variables

When a variable has been forced at runtime, the forced value is always used for
any calculations based upon the variable or its display in an HMI or the Watch
window. The value does not change as the project runs until you force the
variable to a new value or unforce it.
Wonderware InControl Environment User’s Guide

Defining Variables 71
Variable Data Type Groups
The following table lists the IEC 61131-3 data types that are supported by
InControl. Individual data types are described in the pages that follow.

Data Types and Categories

All Types Group SubGroup Data Type
ANY ANY_NUM ANY_REAL LREAL

REAL
ANY_INT DINT

INT
SINT

DWORD ¹

WORD ¹

BYTE ¹
ANY ANY_BIT DWORD

WORD

BYTE

BOOL

 ANY_DATE DT (date and time)

DATE

TOD

TIME

TMR ²

FILE ²

STRING

User-Defined

ANY

Enumeration RTEMODE ²
Note The LINT, ULINT, and LWORD data types are not currently

supported by InControl.

1 The UDINT, UINT, and USINT data types are equivalent to the
DWORD, WORD and BYTE data types respectively. An InControl
enhancement to the ANY_BIT data types makes the UDINT, UINT,
and USINT data types unnecessary.

2 Enhancement to the IEC 61131-3 specification.
Wonderware InControl Environment User’s Guide

72 Chapter 6
WARNING! IEC-61131 does not support the combination of signed and
unsigned numbers (ANY_NUM data types) in a math calculation. If you do
combine signed and unsigned numbers, the results of the math operation may
not be what you expect, which may have the potential risk of death or injury to
personnel and/or damage to equipment. Avoid using expressions that combine
signed and unsigned numbers.
Wonderware InControl Environment User’s Guide

Defining Variables 73
LREAL
The LREAL data type is a member of the ANY_REAL group of data types.
LREAL data types are valid in any instruction or function block that accepts an
ANY, ANY_NUM, ANY_REAL, or LREAL data type. An LREAL number
data type is a 64-bit value composed of one or more of the digits (0-9), is
signed, and contains a decimal point. The range for LREAL numbers is the
following: -1.79769313486231 E308 (negative) to +1.79769313486231 E308
(positive), and includes zero. The IEEE format is used to represent LREAL
data types.

Note When you communicate with the runtime engine using a
SuiteLink/DDE interface, 64-bit LREAL data types are transmitted at 32-bit
precision.

REAL
The REAL data type is a member of the ANY_REAL group of data types.
REAL data types are valid in any instruction or function block that accepts an
ANY, ANY_NUM, ANY_REAL, or REAL data type. A REAL number data
type is a 32-bit value composed of one or more of the digits (0-9), is signed,
and contains a decimal point. The range for REAL numbers is the following: -
3.402823 E38 (negative), to +3.402823 E38 (positive), and includes zero. The
IEEE format is used to represent REAL data types.

DINT
The DINT data type is a member of the ANY_INT group of data types. DINT
data types are valid in any instruction or function block that accepts an ANY,
ANY_NUM, ANY_INT, or DINT data type. The DINT is a signed integer data
type that is composed of one or more of the digits (0-9) and cannot contain a
decimal point. The DINT is 32 bits in length and has a range of -2147483648
to +2147483647.

INT
The INT data type is a member of the ANY_INT group of data types. INT data
types are valid in any instruction or function block that accepts an ANY,
ANY_NUM, ANY_INT, or INT data type. The INT is a signed integer data
type that is composed of one or more of the digits (0-9) and cannot contain a
decimal point. The INT is 16 bits in length and has a range of -32768 to
+32767.
Wonderware InControl Environment User’s Guide

74 Chapter 6
SINT
The SINT data type is a member of the ANY_INT group of data types. INT
data types are valid in any instruction or function block that accepts an ANY,
ANY_NUM, ANY_INT, or SINT data type. The SINT is a short signed integer
data type that is composed of one or more of the digits (0-9) and cannot contain
a decimal point. The SINT is 8 bits in length and has a range of -128 to +127.

Unsigned Integers
The UDINT, UINT, and USINT data types are equivalent to the DWORD,
WORD and BYTE data types respectively. An InControl enhancement to the
ANY_BIT data types makes the UDINT, UINT, and USINT data types
unnecessary.

Note that you can use number bases other than ten for literal numbers that are
ANY_INT data types. Use these formats: 2#<num>, 8#<num>, 16#<num>.

You can reference an individual bit within a BYTE, WORD, or DWORD
variable. See "Assigning a Name to a Bit in a Variable" for more information.

DWORD
The DWORD data type is a member of the ANY_BIT and ANY_INT groups
of data types. DWORD data types are valid in any instruction or function block
that accepts an ANY, ANY_BIT, or DWORD data type. A DWORD is an
unsigned integer data type that is composed of one or more of the digits (0-9)
and cannot contain a decimal point. A DWORD is 32 bits in length and has a
range of 0 to 4294967295.

WORD
The WORD data type is a member of the ANY_BIT and ANY_INT groups of
data types. WORD data types are valid in any instruction or function block that
accepts an ANY, ANY_BIT, or WORD data type. A WORD is an unsigned
integer data type that is composed of one or more of the digits (0-9) and cannot
contain a decimal point. A WORD is 16 bits in length and has a range of 0 to
65535.

BYTE
The BYTE data type is a member of the ANY_BIT and ANY_INT groups of
data types. BYTE data types are valid in any instruction or function block that
accepts an ANY, ANY_BIT, or BYTE data type. A BYTE is an unsigned
integer data type that is composed of one or more of the digits (0-9) and cannot
contain a decimal point. A BYTE is 8 bits in length and has a range of 0 to 255.
Wonderware InControl Environment User’s Guide

Defining Variables 75
BOOL
The BOOL data type is a member of the ANY_BIT group of data types. BOOL
data types are valid in any instruction or function block that accepts an ANY,
ANY_BIT, or BOOL data type. A BOOL is one bit in length and can have one
of two values: TRUE (1, or on) or FALSE (0, or off).
Wonderware InControl Environment User’s Guide

76 Chapter 6
Date / Time Data Types
The DATE, DT, and TOD data types are eight-bit floating point numbers. The
value of the day is represented by a whole number with midnight of December
30, 1899 equal to zero. The value of an hour is the absolute value of the
fractional part of the number. See examples in the following table.
Date / Time Format Examples

DT
The DT data type is a member of the ANY_DATE group of data types. DT data
types are valid in any instruction or function block that accepts an ANY,
ANY_DATE, or DT data type.

The DT data type has the following format:
DATE_AND_TIME | date_and_time | DT | dt#YYYY-MM-DD-HH:MM:S.S,
where YYYY (100-2100) is the year, MM (1-12) is the month, DD (1-31) is
the day of the month, HH (0-23) is the hour, MM (0-59) is the minute, and S.S
(0.0-59.0) is a real number containing seconds.

If you create an expression of DT data types, inputs and outputs must be the
data types listed in "Using Date/Time-Based Data Types in Expressions."

The TODAY and NOW system variables, described in "DATE" and "TOD"
can also be used as a DT data type.

DATE
The DATE data type is a member of the ANY_DATE group of data types.
DATE data types are valid in any instruction or function block that accepts an
ANY, ANY_DATE, or DATE data type.

The DATE data type has the following format:
DATE | date | D | d#YYYY-MM-DD, where YYYY (100-2100) is the year,
MM (1-12) is the month, and DD (1-31) is the day of the month.

If you create an expression of DATE data types, inputs and outputs must be the
data types listed in "Using Date/Time-Based Data Types in Expressions."

The TODAY system variable is a DATE data type that contains the current
system date and can be used to determine when an event takes place. These
operators can be used with TODAY: EQ, LT, GT, LE, GE, and NE. To read the
value of TODAY, use the assignment statement or MOVE command to move
the value to a variable.

Date and Time Value
Midnight, December 30, 1899 0.00
Midnight, January 1, 1900 2.00
6:00 A.M. January 4, 1900 5.25
Noon, January 4, 1900 5.5
9:00 P.M. January 4, 1900 5.875
Wonderware InControl Environment User’s Guide

Defining Variables 77
TOD
The TOD data type is a member of the ANY_DATE group of data types. TOD
data types are valid in any instruction or function block that accepts an ANY,
ANY_DATE, or TOD data type.

The TOD data type has the following format:

TIME_OF_DAY | time_of_day | TOD | tod#HH:MM:S.S, where HH (0-23) is
the hour, MM (0-59) is the minute and S.S (0.0-59.0) is a real number
containing seconds.

The NOW system variable is a TOD data type that contains the current system
time and can be used to determine when an event takes place. These operators
can be used with NOW: EQ, LT, GT, LE, GE, and NE. To read the value of
NOW, use the assignment statement or MOVE command to move the value to
a variable.

If you create an expression of TOD data types, inputs and outputs must be the
data types listed in "Using Date/Time-Based Data Types in Expressions."

TIME
The TIME data type is a member of the ANY group of data types. TIME data
types are valid in any instruction or function block that accepts ANY or TIME
data types. TIME is a variable that represents a duration of time.

The TIME data type has the following format:

TIME | time | T | t# followed by a sequence of one or more numbers and time
unit specifiers. The time unit specifiers, ranges, and examples of their usage
are listed below. You can separate the specifiers with the underscore character:
t#5m_45s.

Time Specifiers

When a variable of a TIME data type is converted to one of the ANY_NUM
data types, the value is converted to a number of seconds. For example, when 3
minutes and 24 milliseconds is converted to a REAL number, the value is
180.024 seconds.

You can use decimal equivalents of days, hours, etc., but only the least
significant unit can be fractional. For example, t#1.5d is equivalent to t#1d12h.
t#1d1.5h is equivalent to t#1d1h30min. However, t#1.5d6h is not valid.

If you create an expression of TIME data types, inputs and outputs must be the
data types listed in "Using Date/Time-Based Data Types in Expressions."

D or d = Days (0-1000000) T#1D2h: 1 day and 2 hours
H or h = Hours (0-23) t#20H: 20 hours
M or m = Minutes (0-59) t#5m45s: 5 minutes and 45

seconds
S or s = Seconds (0-59) t#26S200MS: 26 seconds and

200 milliseconds
MS or ms = Milliseconds (0-999) T#45.325ms: 45.325

milliseconds
Wonderware InControl Environment User’s Guide

78 Chapter 6
Using Date/Time-Based Data Types in
Expressions

If you create an expression of ANY_DATE data types, inputs and outputs must
be the data types listed in the following table.

Time-Based Data Types Used in Expressions

Operation Input1 Input2 Output
Addition TIME TIME TIME
Addition TIME_OF_DAY TIME TIME_OF_DAY
Addition DATE_AND_

TIME
TIME DATE_AND_

TIME
Addition DATE TIME DATE
Addition DATE TIME_OF_DAY DATE_AND_

TIME
Subtraction TIME TIME TIME
Subtraction DATE TIME DATE
Subtraction DATE DATE TIME
Subtraction TIME_OF_DAY TIME TIME_OF_DAY
Subtraction TIME_OF_DAY TIME_OF_DAY TIME
Subtraction DATE_AND_

TIME
TIME DATE_AND_

TIME
Subtraction DATE_AND_

TIME
DATE_AND_
TIME

TIME

Subtraction DATE_AND_
TIME

DATE TIME_OF_DAY

Subtraction DATE_AND_
TIME

TIME_OF_DAY DATE
Wonderware InControl Environment User’s Guide

Defining Variables 79
TMR
The TMR data type is a member of the ANY group of data types. TMR data
types are valid in any instruction or function block that accepts an ANY or
TMR data type.

The TMR has four system variables, which are identified by the timer name
plus an extension:

• Tmr_name.PT contains the preset time value and is a TIME data type.
This variable is retentive (retains its value during a power loss). For more
information about retentive variables, see "Retentive Variables."

You can specify the initial value for this variable in these ways:

Enter a value in the Symbol Properties dialog box in the Symbol
Manager.

Use assignment statements (Structured Text program) or MOVE function
blocks (RLL program) to assign an initial value to this variable.

• Tmr_name.EN starts/stops the TMR and is a BOOLEAN data type.

• Tmr_name.ET contains the elapsed time of the TMR in seconds and is a
TIME data type.

• Tmr_name.Q represents the TMR output and is a BOOLEAN data type.

Operation of the TMR is as follows:

• When tmr_name.EN transitions from FALSE to TRUE, tmr_name.ET is
set to zero, tmr_name.Q is set to FALSE, and the timer begins to time.

• When tmr_name.ET equals tmr_name.PT, then tmr_name.EN is set to
FALSE and tmr_name.Q is set to TRUE. You can design the program to
reset tmr_name.EN earlier than the preset time.

• If tmr_name.EN is held TRUE, by an Assignment statement, for example,
tmr_name.Q will be TRUE for the duration of one scan with a cycle
period of tmr_name.PT. You can use tmr_name.Q in an IF condition to
cause code to execute cyclically. The cycle will drift by approximately one
scan.

• If tmr_name.EN is set to FALSE, tmr_name.ET is frozen at its last value
and tmr_name.Q remains FALSE.

• The elapsed time tmr_name.ET can be read at any time.

If tmr_name.EN is set back to TRUE on the same scan that the timer expires,
then the timer will maintain the excess rollover for the next time interval so
that a regular time pulse can be maintained. For example, a one minute timer
will generate a pulse event with tmr_name.Q field every minute with no drift
due to round off error.

Note Timers evaluate actual time elapsed and are not affected by setting a
program or the runtime engine to Paused mode.
Wonderware InControl Environment User’s Guide

80 Chapter 6
ANY
The ANY data type is a generic data type. ANY can assume the type and range
of any of the data types that are supported by InControl with these exceptions:
FILE, TMR, and User-Defined.

You can use the ANY data type in arrays and in user-defined functions for the
return type, local symbols and parameters. You cannot use the ANY data type
in user-defined function blocks.

You can use the ANY data type on the left side of an Assignment statement, as
shown below:
ANY_Vari := INT_Var;

You cannot use the ANY data type as part of a complex expression. The code
shown below is not valid.
ANY_Vari := ANY_Vari * 3.14 + 100;

FILE
The FILE data type is a member of the ANY group of data types. FILE is a
structure that is designed only for the file control variables used with the RLL
and Structured Text file functions.

The FILE data type has several system variables, which are identified by the
function control block name (fcb) plus an extension. Three of these variables
specify status of a file after it is open: read/write, whether data can be
appended, and whether other applications can access the file. Eight variables
provide a means of monitoring errors, whether a file is in use, when an
operation is completed, etc.

The three input variables are listed in the File Control Input Variable table,
below.

 File Control Input Variables

Variable Description

fcb.ACCESS ¹ Byte variable specifies read/write status of the file after it opens.
FileAccess.ReadWrite = (default) file is open for read/write
operations.
FileAccess.Read=file is open for read-only operations.
FileAccess.Write=file is open for write-only operations.

fcb.APPEND ¹ Boolean variable specifies whether data can be appended to
the file after it opens.
Only valid when file is open with write status. That is, the
ACCESS variable = 0 or 2.
TRUE = data will be appended to the file.
FALSE = (default) data cannot be appended to the file.
Wonderware InControl Environment User’s Guide

Defining Variables 81
The seven variables that handle file operations are listed in the following table.
File Control Output Variables

fcb.SHARE ¹ Byte variable specifies how other applications can access the file
after it is open.
FileShare.ReadWrite=(default) other applications can
access the file for read-write operations.
FileShare.Read=other applications can access the file for
read-only operations.
FileShare.Write=other applications can access the file for
write-only operations.
FileShare.None=other applications cannot access the file.

1 These variables are read and take effect only when the STL OPENFILE
and NEWFILE functions or RLL FOPEN and FNEW function blocks are
executed.

Variable Description
fcb.BUSY Boolean variable indicates that the file is being accessed.

The system sets the File Control Busy variable to TRUE
when the file is being accessed by another file function. If
you attempt to execute a file type function while this
variable is TRUE, an error occurs (error code 15).

fcb.EFLAG Boolean variable indicates when an error occurs. If an error
occurs during a file operation, the system sets the File Error
variable to TRUE. This variable is not reset automatically;
the program must reset the variable. You can also reset it
manually through the Watch window. A file type function
cannot execute while this variable is TRUE. The program
does not go into Fault mode when an error occurs.

fcb.EOF Boolean variable indicates that the system encountered an
End Of File. The system sets the End Of File variable to
TRUE when it encounters the EOF.

fcb.ERR Integer variable contains the error code if an error occurs. If
an error occurs during a file operation, the system writes an
error code to the File Error Code integer. The table that
follows lists the error codes.

fcb.OPEN Boolean variable indicates the file has been opened. The
system sets the File Open variable to TRUE when the file is
open.

fcb.RDN Boolean variable indicates that a read operation has been
completed. The system sets the File Read Done variable to
TRUE when the read operation is finished.

fcb.WDN Boolean variable indicates that a write operation has been
completed. The system sets the File Write Done variable to
TRUE when the write operation is finished.

Variable Description
Wonderware InControl Environment User’s Guide

82 Chapter 6
STRING
The STRING data type is a member of the ANY group of data types. STRING
data types are valid in any instruction or function block that accepts an ANY or
STRING data type.

The format for a STRING data type consists of a string of ASCII characters in
single quotation marks. Example: ‘This is a valid string.’ The maximum length
of a STRING data type is 1024 characters. A string is terminated by the NULL
character in those string operations by all STL and RLL functions except for
string/array conversions. For more information about these exceptions, see
STOBA and BATOS in the "RLL Program Elements" chapter and
STRING_TO_ARRAY and ARRAY_TO_STRING in the "Structured Text
Language" chapter.

InControl interprets a $ followed by two hexadecimal digits, enclosed in single
quotation marks, as the hexadecimal representation of the eight-bit character
code. Example: ‘ $41 $42 $43 ’ is interpreted as A B C.

To designate special characters in a string, precede them with the dollar sign, as
shown in the following examples:

String Special Characters

RTEMODE
The RTEMode data type is termed an enumeration type. That is, the values that
you can assign to a symbol of this data type are limited to a set of constant
strings. Valid values that you can write to an RTEMode data type are
COMPLETE, FAULT, LOADED, PAUSE, PROGRAM, RUN, SCAN, STOP,
UNKNOWN.

Dollar sign = ‘ $$ ’ New line = ‘ $N ’ or ‘ $n ’
Single quote = ‘ $’ ’ Form feed = ‘ $P ’ or ‘ $p ’
Double quote = ‘ $” ’ Carriage return = ‘ $R ’ or ‘ $r ’
Line feed = ‘ $L ’ or ‘ $l ’ Tab = ‘ $T ’ or ‘ $t ’
Wonderware InControl Environment User’s Guide

Defining Variables 83
User-Defined
The User-Defined data type is a member of the ANY group of data types. User-
Defined data types are valid in any instruction or function block that accepts a
User-Defined data type, or one of the data types in the ANY group.

The User-Defined data type can be either a structure or an enumeration.

• A structure consists of a set of existing data types (INT, WORD, REAL,
other user-defined data types, etc.), which are called members. The ANY,
TMR and FILE data types and functions and function blocks are not valid
members for the user-defined data type. For each structure, you define the
members and the data type for each member. The members of a structure
do not have to be the same data type. You can use individual members
anywhere within a program where the data type for that member is valid.

• An enumeration is a type of structure, the members of which are a set of
DINT data types. Use an enumeration when you need to define a group of
named constants. When logic that contains the constant is solved, the
value of the constant is the initial value, which you assign when you
define the constant.

Example of the use of a structure: you can create a user-defined data type
called Device_Status, composed of three members called Running, Stopped,
and Speed. Running and Stopped are BOOL data types, and Speed is a REAL
data type. You can then define a variable, e.g., Motor1, which is a
Device_Status data type, and it automatically has the three associated members
Motor1.Running, Motor1.Stopped, and Motor1.Speed. In an RLL program, a
coil called Motor1.Running controls the startup of Motor1; a coil called
Motor1.Stopped stops Motor1; and the speed of Motor1 is determined by the
value contained in Motor1.Speed.

If you want Device_Status to have code associated with it, define it as a
function block. For more information, see "Function Blocks" in the "Program
Organization and Management" chapter.

Example of the use of an enumeration: The seven modes of the runtime engine
are represented by members of the enumeration called Mode, of type
RTEMode. The members and their initial values are Fault (6), Run (5),
Program (4), Scan (3), Pause (2), Stop (1), and Unknown (0). When the
runtime engine is running, for example, Mode = Run. If you assigned the value
of Mode to an integer variable, the variable takes the value of 5.
Wonderware InControl Environment User’s Guide

84 Chapter 6
Data Type Conversion
When mixed data type operations are encountered during program
compilation, the compiler may convert the data type to a larger numeric type.
Warnings may be generated when the compiler converts data types. You can
avoid some of these warnings by using the conversion functions. An attempt to
mix incompatible data types when no valid conversion or promotion exists
generates an error message.

Conversion is handled for these data types:

• BYTE

• WORD

• DWORD

• DINT

• INT

• SINT

• REAL

• LREAL

• BOOL (limited in scope)

Most of the function blocks accept a variety of input and output data types and
convert them as needed. The conversion works on an operation-by-operation
basis and may hide intermediate results that are out of range. If this
intermediate result is significant, then you need to convert one or both of the
operands to larger numeric data types. For example, if you use the RLL ADD
function block to add two WORDs, the sum may require a DWORD. Because
the result does not fit in a WORD, it is truncated. In this case, changing one or
both of the operands to DWORDs yields a different (untruncated) value. It is
necessary to convert one or both WORDs to DWORDs before adding them.
Wonderware InControl Environment User’s Guide

Defining Variables 85
Accessing the Symbol Manager
Use the Symbol Manager to create or edit program variables. You can access
the Symbol Manager from various points of program development. Some of
these are described below. The Symbol Manager fields and buttons are
described in the "Symbol Manager Dialog Box" table (page 6-21).

To access the Symbol Manager:

On the Tools menu, click Symbol Manager.

OR

In the Project Window, double-click Symbols.

OR

In the Watch Window, click Add Symbol.

OR
Wonderware InControl Environment User’s Guide

86 Chapter 6
In the Edit Contact and Edit Coil dialog boxes, and the RLL function blocks,
click the Contact Symbol drop-down menu, then click Browse.

OR

To access the Symbol Manager:

Double-click any variable (or any blank area) in a Structured Text program.

OR

Double-click selected variable fields in the configuration dialog boxes for
some FOEs.

The Symbol Manager is shown in the following figure.
Wonderware InControl Environment User’s Guide

Defining Variables 87
Symbol Manager Dialog Box

Field Description
Scope

Click the display tool to display the scope of variable:
global variables, individual (local) program variables,
functions, function blocks, macros, runtime engine system
variables, or user-defined variable type definitions. You can
also choose the scope of variables by clicking the appropriate
level in the tree structure.

Name Displays the names of all variables in the selected scope.
Type Displays the data type of the variable.
Address For I/O drivers, specifies the location of the I/O point.

For user-defined functions, function blocks, and data types,
specifies the order in the structure.

Description Displays the variable descriptions.
Filter Use the filter to display only selected data types.
Wonderware InControl Environment User’s Guide

88 Chapter 6
Using the Symbol Manager Toolbar
The Symbol Manager toolbar displays the tools used to create and handle
symbols.

Symbol Manager Toolbar

Option/Button Description
Click Up One Level to move up one level in the
scoping hierarchy.

Click New to add a variable to the Symbol Manager.

Click Properties to edit an existing variable.

Click Cross Reference to display variables, where and
how often they are used in the program.

Click Delete to remove a variable from the Symbol
Manager.

Click Edit User Types to create/edit a user-defined data
type.

Click Print Symbols to print a list of the variables in
the Symbol Manager. You can also choose to print
cross-references and variables that are not referenced.
Click Import to read an ASCII file (comma-separated
variable format) of variables into the InControl
database.
Click Export to create an ASCII file (comma-separated
variable format) of the InControl variables.
Click Show/Hide Tree to display or hide the symbol
tree structure.

Click List View to display a variable listing only.

Click Detailed View to display a variable’s name, data
type, address, and description.
Wonderware InControl Environment User’s Guide

Defining Variables 89
Editing Tips - Context Menus
During a symbol editing session, you can right-click for a fast display of the
editing options for the Symbol Manager.

• With a symbol selected, right-click to display the following menu:

• With no symbols selected, right-click to display some of the options in the
Symbol Manager toolbar:

Editing Tips - Changing Member Order
You can change the order of the members in a user-defined data type or the
parameters of a user-defined function or function block.

• With the object selected, right-click and use the Decrease / Increase
Address options.
Wonderware InControl Environment User’s Guide

90 Chapter 6
Editing Tips - Copy / Paste / Move Symbols
You can copy/paste symbols as described below.

• Between the local and global scope within a program. You can also drag
symbols between scopes.

• Between the Symbol Manager and other applications.

• Between the Symbol Managers of two instances of InControl. When you
select a symbol, drop it on the appropriate scope (Global, program name,
or User Type Definition), not in the symbol list. See the following figure.
Wonderware InControl Environment User’s Guide

Defining Variables 91
Creating a Variable
To create a program variable:

1. Access the Symbol Manager.

2. Select the appropriate scope, for example, global, local (an individual
program), function block, etc.

3. Click New on the Symbol Manager toolbar.

The Symbol Properties dialog box appears displaying the same
properties as the preceding variable in the list.

Creating a Variable - Symbol Properties Dialog Box

4. Enter the name of the variable into the Name field. Use only alphanumeric
characters and the underscore character.

Local variables must be unique. That is, two variables with the same name
cannot be in the same program. In addition, a local variable cannot have
the same name as a global variable.

5. Select the data type in the Type field.

6. Enter the optional description into the Description field.

7. If the variable requires an initial value, enter the value into the Initial
Value field.

8. Check the Constant checkbox if you want the value for this variable to
remain constant. Be sure to enter the value in the Initial Value field.
Wonderware InControl Environment User’s Guide

92 Chapter 6
9. Click the Retentive Value checkbox if the variable is to retain its value in
the event of a power loss.

InControl periodically saves retentive and forced variables to the hard
disk. The default frequency of zero disables this feature. This interval is
configurable and you can set it in the Runtime Engine Properties dialog
box, described in "Setting Scan Times" of the "InControl System
Administration" chapter.

10. Click Add Local or Add Global. The new variable appears in the Symbol
List field.

To remove an existing variable:

1. Click the name of the variable.

2. Click Delete on the Symbol Manager Toolbar.

You can also press Del on the keyboard.
Wonderware InControl Environment User’s Guide

Defining Variables 93
Creating an Array of Variables
To create an array of variables:

1. Access the Symbol Manager and follow the steps described in "Creating a
Variable" for creating a new variable.

2. Check the Array checkbox. This selects for an array of variables and the
Lower Bound and Upper Bound fields become active.

3. Enter lower and upper values for the array into the Lower Bound and
Upper Bound fields.

4. Click Add Local or Add Global.

Referencing Arrays
Use literal values or expressions in brackets to reference the elements of an
array. In the following example, an element is referenced with a literal value.
Array_of_Values[0] := 42;

In the following example, an element is referenced with an expression.
Int1 := Array_of_Values[i+1];

Note The InControl compiler generates an out-of-range error if you use a
literal value for an array index and it is not within the specified bounds. If you
use an expression to define the index, and the expression resolves to a value
that is out of range at runtime, the program enters the Fault mode.

Assigning a Name to a Bit in a Variable
The Indexed Bit feature allows you to reference a specific bit within a BYTE,
WORD, or DWORD variable. The scope must be as follows:

• If the source variable is global, the bit can be either local or global.

• If the source variable is local (scoped to a program, or to a runtime engine
variable, for example) the bit must have the same scope.

• If the source variable is a member in a user-defined data type, the bit must
be a member in the same user-defined data type.

You can select the source variable and assign names to the bits, or define the bit
and then specify its source variable.
Wonderware InControl Environment User’s Guide

94 Chapter 6
To assign names to bits in a selected variable:

1. Access the Symbol Manager.

2. Right-click the source variable (BYTE, WORD, or DWORD data type) and
then click Define Bits. The Define Bits dialog box appears.

Define Bits Dialog Box

3. Enter the name for the bit(s).

To define a bit and then specify its source variable:

1. Access the Symbol Manager and follow the steps described in "Creating a
Variable" for creating a new variable.

2. Check the Indexed Bit checkbox.

3. Enter the name of the source variable in the Source field.

4. Enter the bit number in the Bit # field. Valid values are 0-7 for a BYTE, 0-
15 for WORDs, and 0-31 for DWORDs.

If the source is an array, enter the bit number based on its position in the
array. For example, to index the last bit in an array of four bytes, enter 31
for the bit number.

5. Click Add Local or Add Global.
Wonderware InControl Environment User’s Guide

Defining Variables 95
Creating a User-Defined Data Type
You can custom-design a data type for specific applications. First, you create a
user type definition and then add variables to your program that are based on
the definition. The user type definition can be either a structure or an
enumeration, as described in "User-Defined."

Custom-Designing a Data Type
To create a user type definition:

1. Access the Symbol Manager.

2. Click Edit User Types on the Symbol Manager toolbar.

3. Click New on the Symbol Manager toolbar.

The User Type Definition dialog box appears.

User Type Definition Dialog Box

4. Enter a name in the Type Name field, and a description (optional). Click
Structure or Enumeration and then click OK.

5. To begin adding members to the structure or enumeration, click New on
the Symbol Manager toolbar. The Symbol Properties dialog box appears.

6. Enter the appropriate information, as described in "Creating a Variable."
For enumerations, the data type must be a DINT.

7. Click Add Member. Then repeat steps 5-7 to add additional members to
the structure.
Wonderware InControl Environment User’s Guide

96 Chapter 6
You can change the order of the members in a user-defined data type. With the
data type selected, right-click and use the Decrease / Increase Address
options. This allows you to modify an existing user-defined data type instead
of defining a new one.

Note If you make changes to the user type definition, such as adding or
removing a member, all instances of that definition are automatically updated.
However, if you specify an initial value for a member and later change the
initial value, the initial values of any variables that are based on the originally
defined data type are not updated. Such changes, including a change to the
address order of the members, require a full reload of the project before you
can run it.

Using the User-Defined Data Type
The new user type definition will appear as one of the choices in the Type field
of the Symbol Properties dialog box, along with the other data types. When
you define a new variable in the Symbol Manager, you can choose the new
user type definition as the data type for the variable.

The following examples demonstrate various ways to reference user-defined
types.

Referencing an individual member:

User_Type1.Int1 := 42;

Referencing an array of user-defined types:
User_Type2[6].Int1 := 11;

Referencing an array of user-defined data types with a member that is an array:
User_Type3[9].Int2[3] := 77;

Note The InControl compiler generates an out-of-range error if you use a
literal value for an array index and it is not within the specified bounds. If you
use an expression to define the index, and the expression resolves to a value
that is out of range at runtime, the program enters the Fault mode.
Wonderware InControl Environment User’s Guide

Defining Variables 97
Printing Information for Variables
You can print the following types of reports from the Symbol Manager.

• Symbol details—Data type, description, and initial value for each variable.

• Program references—All variables that are referenced by each program.

• Cross references—All programs that reference each variable.

• Unreferenced—Variables that have been defined but are not referenced.

The InControl compiler generates the information that is printed. Therefore,
you must validate the project before you print a report.

To print information for variables:

1. Validate the project.

2. Access the Symbol Manager.

3. Click Print Symbols on the Symbol Manager toolbar.

The Print Select Report Type dialog box appears.

Print Select Report Type dialog box

4. Select the type of type of report and the variables (global, local, I/O, etc.).

Note If you print more than one type of report, you are prompted to select the
printer for each report.
Wonderware InControl Environment User’s Guide

98 Chapter 6
System Variables - General
InControl provides system variables that can be used to monitor and control
various functions of the system. The following table lists the general system
variables.

General System Variables

Variable Description
Mode A Mode variable (INT) is created for each program and also for

each I/O configuration. These variables can have the following
values:
UNKNOWN (0) Unloaded from the runtime engine.
STOP (1) Program (I/O) is stopped.
PAUSE (2) Program (I/O) is paused.
SCAN (3) Program (I/O) is in single scan mode.
PROGRAM (4) Program (I/O) is being loaded to runtime
engine.
RUN (5). Program (I/O) is running.
FAULT (6) Program (I/O) is in error. To clear a fault, see

"Clearing Fault Mode and Error Conditions" in the
"InControl System Administration" chapter.

COMPLETE (7) SFC program has finished execution. Other
program types can be set to the Complete mode.
Functionally, the Complete and Paused modes are
equivalent.

LOADED (8) For programs: program is loaded to the runtime
engine and is ready to run when called by another program.
Applicable to functions, function blocks, and FOEs that require
function calls to a method in order to run. Note that the mode of
these POUs does not change to Run, even after they are called.

For I/O configurations: configuration has been
downloaded to a remote node. Automatic configuration can
be done on that remote node while the configuration is in
the loaded mode.

NOW Contains the current system time. For more information, see
"TOD."

TODAY Contains the current system date. For more information, see
"DATE."

T ¹ Contains the elapsed execution time of an SFC step.

X ¹ Contains the active/inactive status of an SFC step.

DN ² For an SFC, indicates when an SFC is finished executing. For a
Step, indicates when the code within a Step is finished
executing.

1 For more information, see the "SFC Program Elements" chapter.
Wonderware InControl Environment User’s Guide

Defining Variables 99
System Variables - Runtime Engine
InControl provides system variables for the runtime engine that can be used to
monitor and control the runtime engine. The following table lists the runtime
engine system variables.

Note The general system variables generated by the runtime engine do not
appear on a newly installed system or when you stop the runtime engine (click
Stop on the Runtime menu). In these situations, you cannot add them to the
Watch window and SuiteLink/DDE clients cannot read them.

Runtime Engine System Variables

Variable Description
RTEngine.DivideZero Boolean value. TRUE indicates a division by zero;

set by the runtime engine (RTE).
RTEngine.Error Boolean value. TRUE indicates an error condition

has occurred in the runtime engine. Check the
Wonderware Logger for more information.

RTEngine.ExecAvg TIME value. Contains the average execution time for
the program logic that is being executed.

RTEngine.ExecLast TIME value (read only). Contains the last execution
time for the program logic that is being executed.

RTEngine.ExecMax TIME value. Contains the maximum execution time
for the program logic that is being executed.

RTEngine.FirstScan Boolean value (read only). TRUE indicates
occurrence of first program logic scan.

RTEngine.FirstScanOn
AutoStart

Boolean value (read only). TRUE indicates
occurrence of first program logic scan after an
automatic start following a system reboot.

RTEngine.IOAvg TIME value. Contains the average I/O scan time.
RTEngine.IOLast TIME value (read only). Contains the last I/O scan

time.
RTEngine.IOMax TIME value. Contains the maximum I/O scan time.

RTEngine.Mode ¹ RTEMode value. Indicates current mode of the
runtime engine:
UNKNOWN (0) All programs are unloaded from
runtime engine.
STOP (1) Programs in a project are stopped.
PAUSE (2) Programs in a project are paused.
SCAN (3) Project is in single scan mode.
PROGRAM (4) Project being loaded to runtime
engine.
RUN (5) At least one program in a project is
running.
FAULT (6). Runtime engine cannot run project.
Wonderware InControl Environment User’s Guide

100 Chapter 6
Variable Description
RTEngine.NodeName STRING value that contains the name of the node

where the runtime engine is running.
RTEngine.PowerFail Boolean value indicates a power failure when

TRUE. A UPS configuration is required.
RTEngine.ProjectName STRING value that contains the name of the

project currently loaded in the runtime engine.
RTEngine.RelativeTime TIME value (read only) that contains the length of

time that the runtime engine has been running since
the system was booted. This value is independent
of the system clock and can be used in a program
to calculate timed intervals.

RTEngine.ScanAvg TIME value contains the average scan.

RTEngine.ScanLast ² TIME value (read only) contains duration of the
last scan.

RTEngine.ScanMax ² TIME value contains the maximum scan time.

RTEngine.ScanOverrun ³ Boolean value indicates a scan overrun when
TRUE.

RTEngine.ScanTime LREAL value contains the current user-assigned
scan time setting in milliseconds. Values written to
this variable will change the runtime engine scan
time.

RTEngine.TimeStamp DT value that contains the timestamp of the project
currently loaded in the runtime engine.

RTEngine.Version STRING value that contains the version of the
runtime engine.

1 The Watch window and external programs, such as InTouch, or a Visual
Basic application, can write to Mode, and the new value is displayed for
the variable. InControl executes any changes written to the variable. You
can write or force only the values 2, 3, 5, or 6 to the RTEngine.Mode
variable.

2 The RTEngine.ScanLast and RTEngine.ScanMax variables may have
incorrect values at very fast scan times. The time monitoring utilities
execute at a lower priority than the runtime engine. Occasionally more
than one scan may occur without being timed. Check the
RTEngine.ScanOverrun bit to see if scans are taking longer than
expected to complete. For more information, see "Adjusting the Scan
Time" in the "InControl System Administration" chapter.

3 For a discussion of the conditions that can result in a scan overrun, see
"Setting Scan Times" in the "InControl System Administration" chapter.
Wonderware InControl Environment User’s Guide

Defining Variables 101
Note The RTEngine.RelativeTime variable can be used for timing events, as
shown in this example:
IF (B1) THEN
SavedTime:=RTEngine.RelativeTime;
ENDIF;
IF (B2) THEN
TimeItTook:=RTEngine.RelativeTime-SavedTime;
ENDIF;

Transferring Symbol Databases
InControl supports the exchange of symbols between InControl projects and
between InTouch and InControl. The export/import utility can write and read
an ASCII text file that has a comma-separated format (CSV). You can easily
edit a file of symbol data using an ASCII text editor or a spreadsheet, such as
Excel.

The export utility gives you the following options for exporting symbol
information.

• InControl format

• InControl cross reference

• InTouch format

• InTouch super tags

Symbol Exchange Between InControl Projects
When you transfer symbols between InControl projects, consider the following
points.

• Use the InControl file format when you export symbols. When you import
symbols, this format is used automatically.

• InControl symbols are created by a number of different kinds of objects.
Some of these objects do not permit importation of symbols, for example,
ActiveX, FOEs, and I/O objects.

• You can load new local symbols into a program, but the program must
already exist. For example, to load local symbols into a program named
RLL1, you must create a program named RLL1 before importing the
symbols. Note that the same is true for symbols used in functions, function
blocks, and macros; these POUs must already exist before you can import
their symbols. Global symbols can be imported without this limitation.

Symbol Cross-Reference Reports
You can create a report of symbol cross references that has a comma-separated
format. You can open the report with any ASCII text editor, such as Notepad,
or with a spreadsheet, such as Excel.
Wonderware InControl Environment User’s Guide

102 Chapter 6
Symbol Exchange Between InControl and
InTouch

When you transfer symbols between InControl and InTouch, consider the
following points.

• Use the InTouch file format or the InTouch Super Tag file format when
you export symbols to InTouch. Choose the Super Tag format to create
InTouch super tags from logical groups of InControl symbols. The
following groups are examples of InControl symbols that can be exported
as super tags:

Elements of an array.

Parameters of timers or counters.

Parameters of any function or function block.

Runtime engine system variables.

• Symbols exported from InTouch can only be imported as global symbols
to InControl; and only those marked as being items of the runtime engine
are imported.

• When importing symbols to InTouch, the symbol names are translated to
the InTouch-compatible format in the same way the wizards do in
InControl. All periods and brackets are converted to underscores. That is,
GArray[1] becomes GArray_1_ and RTEngine.ScanMax becomes
RTEngine_ScanMax.
Wonderware InControl Environment User’s Guide

Defining Variables 103
Importing/Exporting Symbols
To export symbols:

1. Access the Symbol Manager and click Export on the Symbol Manager
toolbar.

The Export - Select Report Types dialog box appears.

Export -Select Report Types dialog box

2. Select the type of type of report and the variables (global, local, I/O, etc.).

To export to another InControl project, click InControl Format.

To export to an InTouch project, click InTouch Format or InTouch
SuperTags.

To generate a file of symbol cross references, click InControl Cross
Reference.

3. Click OK. The Save As dialog box appears.

4. Enter a file name and click Save. The new file in the CSV format is
created.
Wonderware InControl Environment User’s Guide

104 Chapter 6
To import symbols:

1. Access the Symbol Manager and click Import on the Symbol Manager
toolbar.

2. The Open dialog box appears.

3. Select the symbol database file and click Open. The symbols are imported
and displayed in the Symbol Manager.

InControl CSV File Format
The format of the InControl CSV file is shown in the figure InControl File
CSV Format (page 6-39).

The labels used in the CSV format are listed below.

• ParentObject — name of the object that created the symbol. If global, this
is Global.

• ParentObjectType — Global, Program, ActiveX, or IO.

• Name - name of the symbol.

• DataType - BOOL, INT, DINT, BYTE, WORD, DWORD, REAL,
LREAL, STRING, TIME, DATE, TOD, or user-defined type.

• InitialValue — initial value of the symbol.

• Attributes — attributes of the symbol, separated by the | character. These
are necessary to maintain internal relationships within InControl, and
normally should not be edited. If you are creating new symbols, it is
recommended that you copy them from an existing symbol with the
required characteristics and then make the necessary changes.

• ArrayDefinition — if the symbol is an array, this field contains
LowerBound-UpperBound values of the array. If the field is empty, the tag
is not an array.

• Comment — this field contains a user-defined description of the symbol.

• IOTitle — if the symbol is an IO point, this field contains the string output
by the driver that describes what the symbol represents, for example,
PROFIBUS-DP board.Module.Port).

• IOName — if the symbol is an IO point, this field contains the string
output by the driver that contains the names corresponding to IOTitle, for
example, SMSProfi.OutPutMod.OutPortMs. If the symbol is a bit index
into another symbol, this field contains the source symbol name and the
bit offset, for example, GWord.0, GWord.1, etc.

• BitIndexSource — if the symbol is a bit index into another symbol, this
field contains the name of the source symbol.

• BitIndexPosition — if the symbol is a bit index into another symbol, this
field contains the bit position within the source.
Wonderware InControl Environment User’s Guide

Defining Variables 105
• Address — address of the symbol. Most symbols do not have an address.

• Order — contains the order (hexadecimal) of a member within a user-
defined data type structure.

The format of the InControl CSV file is shown in the following figure.

InControl File CSV Format

Editing Symbol Files
You can edit symbol definitions with a spreadsheet, such as Excel, or an ASCII
text editor and then re-import them into InControl. InControl automatically
merges any changes with the existing symbol definitions. It is recommended
that you not make any changes to the attributes.

In general, if a string contains a comma, the string must be enclosed in double
quote marks ("this comment has a comma, within it").

The order of the records within a CSV file has these constraints for user-
defined symbols and indexed bit symbols:

User-defined symbols

• The user-defined type must be first.

• The members for the user-defined type appear second.

• Individual symbols of a user-defined type appear last.

Indexed-bit symbols

• The source symbol must be first.

• The indexed bits must follow the source symbol.
Wonderware InControl Environment User’s Guide

106 Chapter 6
Wonderware InControl Environment User’s Guide

Using the Factory Object Editor 107
C H A P T E R 7

Using the Factory Object
Editor

This chapter introduces the InControl Factory Object editor and tells how to
use it to add ActiveX controls to an InControl project.

Contents
• Defining a Factory Object

• Installing ActiveX Controls

• Organizing FOEs

• Adding FOEs to a Project

• Configuring Factory Objects

• Using the Tool and Menu Bars

• Running and Controlling FOEs

• Runtime Animation

• Uploading Parameters

• Using Third-Party FOEs

• Event Handling by Factory Objects

• Referencing InControl Factory Objects
Wonderware InControl Environment User’s Guide

108 Chapter 7
Defining a Factory Object
InControl is compatible with the ActiveX Server specification. The InControl
Factory Object (FOE) editor is an ActiveX container, which enables you to use
ActiveX controls within an InControl project.

An ActiveX control must be installed within InControl before you can
configure and run it. After installation, it is referred to as an InControl factory
object (FOE). Like other InControl programs, an FOE can run independently.
You can also call it for execution from another program.

The current release of InControl includes several FOEs. The following FOEs
are described in this manual:

• Use the PID InControl FOE to handle PID loop functions.For information
about configuring the PID FOE, see the InControl PID and Analog Alarm
Reference Manual.

• Use the Analog Alarm InControl FOE to monitor an analog input signal
for alarm conditions. For information about configuring the Analog Alarm
FOE, see the InControl PID and Analog Alarm Reference Manual.

For information about additional Wonderware Factory Objects, contact your
distributor.

To install an FOE in InControl, follow this general procedure.

Note that InControl FOEs always check for the proper Wonderware licensing
information before they are executed. Typically, ActiveX controls are licensed
and do not load into InControl if the license is missing.

One or more ActiveX controls may be present on your hardware unit. Note that
not all of these are appropriate for running in an InControl project. It is highly
recommended that you test third-party objects before using them in a factory
process.
Wonderware InControl Environment User’s Guide

Using the Factory Object Editor 109
Installing ActiveX Controls
You must install the ActiveX control before you can add it to the Project
Window. The Wonderware FOEs are installed automatically when you install
InControl.

To install an ActiveX control:

1. Copy the ActiveX control to the InControl hardware unit.

2. On the File menu, click New.

The New dialog box, which lists program types supported by InControl,
appears.

3. Select Factory Object and click OK. The Select Factory Object dialog
box appears. Note the Wonderware FOEs, which are already installed.

Select Factory Object Dialog Box

4. Optional. If you want to group FOEs in categories, create the category
(See "Organizing FOEs") and click the category name before installing.

5. Click Install Factory Object on the toolbar.

The Install Control dialog box appears.

Install Control Dialog Box
Wonderware InControl Environment User’s Guide

110 Chapter 7
6. Select the ActiveX control and click OK. The Select Control Type dialog
box appears.

For information about choosing control types, see "Using Third-Party
FOEs."

If the ActiveX control is on your system but does not appear in the list,
you may need to make a change in the system registry. See "Changing
System Registry Keys" in the "InControl System Administration" chapter.

7. Select the type of control and click OK. The object is installed in
InControl and appears in the Factory Object list.

If you click OK to close the dialog box, you are prompted to enter a file name
and save. This adds the FOE to the project, also described in "Adding FOEs to
a Project." If you want to install additional FOEs, repeat steps 4-6 before
closing the dialog box.
Wonderware InControl Environment User’s Guide

Using the Factory Object Editor 111
Organizing FOEs
You can organize FOEs under one or more categories and you can uninstall
FOEs that you do not need.

To create a new category:

1. Click the category under which you want to create a new one, and click
New Category on the toolbar.

2. When the New Category dialog box appears, enter a name and click OK.
The new category appears in the Category field.

To uninstall an FOE:

1. Click the FOE name.

2. Click Uninstall Factory Object on the toolbar.
Wonderware InControl Environment User’s Guide

112 Chapter 7
Adding FOEs to a Project
After installing an ActiveX control as an InControl FOE, you can add one or
more instances of it to a project.

To add an FOE to a project:

1. On the File menu click New.

The New dialog box, which lists program types supported by InControl,
appears.

2. Select Factory Object and click OK. The Select Factory Object dialog
box appears.

Adding FOES – Select Factory Object Dialog Box

3. Select the FOE and click OK.

4. When the Save As dialog box appears, enter a name (up to 31 characters)
and click Save. The FOE is added to the project.
Wonderware InControl Environment User’s Guide

Using the Factory Object Editor 113
Configuring Factory Objects
After adding an FOE to a project, you can open it for configuration.

To open and edit an existing FOE:

1. If the Project window is not open, click Project in the View menu to open
it.

2. Double-click the name of the FOE. The FOE window opens.

3. To configure the FOE, double-click inside the FOE window.

The configuration dialog boxes appear. For information about configuring
a third-party FOE, refer to the specific documentation for that object. The
PID and Analog Alarm FOEs are described in the InControl PID and
Analog Alarm Reference Manual."

For information about configuring the Serial Port Interface FOE, see the
Wonderware InControl Serial Port Version 2 User's Guide.

You can also click Open in the File menu to open an existing program for
editing. When the Open dialog box appears, select the program to open. If a
program is not part of the current project, you can add it.

You can click Files into Project in the Insert menu to add any POU (program,
function, function block, etc.) to a project. In the following figure, the program
PID2, shown in the Insert Files into Project dialog box, is selected and can be
added to Project10.

Adding a POU to a project.
Wonderware InControl Environment User’s Guide

114 Chapter 7
Using the Tool and Menu Bars
To configure an FOE, edit its properties. You can open the dialog boxes for the
properties by several methods.

To display the dialog boxes for the properties:

Click the FOE and then click Properties on the Factory Object toolbar.

OR

Click the FOE and then click Properties on the Edit menu.

OR

Right-click the FOE and then click Properties.

OR
Wonderware InControl Environment User’s Guide

Using the Factory Object Editor 115
Double-click the FOE. Note that if the FOE is running and you are viewing its
animation, you cannot access the properties by double-clicking the FOE. Use
one of the other methods to access the properties.

Note You can right-click the FOE to validate, download, run, stop, pause, and
upload the FOE.
Wonderware InControl Environment User’s Guide

116 Chapter 7
Running and Controlling FOEs
Some Wonderware FOEs, such as the PID FOE, are designed to run
automatically. They have a method that is called once every scan by the
runtime engine. For the PID FOE, this method is the DoControl method. When
loaded to the runtime engine, the mode for these FOEs is indicated as Run,
Pause, Stop, etc.

Some FOEs do not have a method designed to run automatically every scan.
For these FOEs, you need to include code in an SFC or Structured Text
program to call a method for the FOE to execute. When downloaded to the
runtime engine, the mode for these FOEs is indicated as Loaded, which is
displayed in the Project window. These FOEs are ready to execute methods
and set properties when called for execution.

You must also enter code in an SFC or Structured Text program to call one of
the FOE methods when you need to interact with the FOE. For example, to set
the Wonderware PID FOE named TempControl to automatic mode, the
following function call executes the method named Auto:
TempControl.Auto();

Runtime Animation
Some Wonderware FOEs appear in an animation mode at runtime. If you
display one of these FOEs in the Development environment, selected
parameters are updated when they change, as illustrated by the Wonderware
PID FOE shown below.

PID FOE at Runtime.

To enable runtime animation, on the View menu, click Runtime Highlighting.
Wonderware InControl Environment User’s Guide

Using the Factory Object Editor 117
Uploading Parameters
Some FOEs allow you to upload parameters from the runtime engine to the
Development environment. This can be useful when you want to determine
empirically certain values, and then upload these values to the property sheets
for the FOE. Refer to the documentation for the individual FOEs for the
specific symbols that are uploaded.

For more information about the behavior of variables at runtime, see the
"Defining Variables" chapter.

Using Third-Party FOEs
Some third-party FOEs may not be designed for real-time factory control.
InControl FOEs need to operate quickly and not cause memory loss over
extended periods of time. If you intend to use the FOE at runtime, you need to
verify that it meets the following guidelines.

• Do not use code that makes function calls requiring human interaction,
such as a method that displays a dialog box.

• Do not call a method that requires a relatively long period of time to
execute, such as sounding the hardware unit speaker causing a message
beep.

• Verify that memory is allocated and deallocated correctly for strings that
are passed as parameters to methods or returned as values from methods.

• It is highly recommended that you test third-party FOEs before using them
in a factory process.

• It is recommended that the threading mode for FOEs be set to "Both."
FOEs with threading models that are not set to "Both" and that are used at
runtime, can cause a serious degradation in performance. Accessing the
data values or methods of the FOE may be up to 20 times slower.

For information about changing the threading model of an FOE, see "Changing
FOE Registry Setting" in the "InControl System Administration" chapter.

Note Do not change the threading model from "Apartment" to "Both" for
ActiveX Controls built using Visual Basic 5.0 or Visual Basic 6.0.
Wonderware InControl Environment User’s Guide

118 Chapter 7
Event Handling by Factory Objects
Many factory objects have the capability of triggering events. You can map an
event to a user-defined function and the function runs when the event is
triggered.

Typically, the event takes place synchronously with the runtime engine scan.
For example, code in a POU can be written to trigger the event. However, an
event can be asynchronous. For example an operator could write a change to a
variable in the Watch window and thereby trigger an asynchronous event.

Mapping Functions to Events
The types of events that are supported by a factory object vary and depend on
the design of the individual factory object. The events that you can map to
functions appear automatically within the InControl Events Editor.

Note An event does not appear in the Events Editor if InControl does not
support the data types of all the parameters that the event uses.

To map a new function to an event:

1. Click Events on the Edit menu. The Events Editor opens.

2. Locate the event and enter the function name in the adjacent Function
column.

3. Click OK and the system prompts you to add a new function.

4. When you confirm, the New dialog box appears and you can select RLL
or STL for the function code type.

5. Click OK and the editor adds the new function to the Function folder in
the Project window.

6. Open the new function and enter the code.

To map an existing function to an event:

1. Click Events on the Edit menu. The Events Editor opens.

2. Locate the event and in the Function column, type the name of the
function adjacent to the event.

You can also click the Browse button to display the existing functions.

All functions that are valid for use with the event are displayed.

3. If you want to examine or modify the function code, double-click the
function name and the editor opens.
Wonderware InControl Environment User’s Guide

Using the Factory Object Editor 119
Defining the Function
The function that you map to the event is identical in form to any other
InControl function, with the following exceptions:

• The first parameter must be an InOut parameter.

• The data type for the first parameter must be the same as the data type of
the factory object used with the function. The data types for all other
parameters must match those defined by the event.

When InControl automatically generates the parameters, it automatically
assigns the first parameter the name ThisControl. You can change the name if
you prefer.

You can map the same function to more than one event. In addition, InControl
allows you to map a function to events in other factory objects.

WARNING! If an event triggers an inappropriate function call there is the
potential risk of unpredictable operation by the controller, which can result in
death or injury to personnel and/or damage to equipment.
Wonderware InControl Environment User’s Guide

120 Chapter 7
Referencing InControl Factory Objects
For all ActiveX controls (including controls not designed as InControl factory
objects), the properties and methods that can be mapped to an existing IEC-
61131 data type are added as symbols to the Symbol Manager. You can
monitor or modify these symbols from the InControl Watch Window, as well
as from your application program.

To reference these symbols, use the following naming format for properties:
<FOE name>.<property name>

For example, to reference variables called Temp and Error in the FOE named
TempControl, use
TempControl.Temp and

TempControl.Error.

For properties with parameters, use the following format:
<FOE name>.<property name> (parameter list).

Use an Assignment statement to access a property with parameters just as you
do with a function. For example:
FOE1.param(3):=100;

Use the following calling format for methods:
<FOE name>.<method name> (parameter list)

For example, to call a method named Square in the FOE named Math, which
takes one parameter, use:
Math.Square(6);

Note If a program (RLL, SFC, FOE, or Structured Text) attempts to write a
value to a read-only variable of any ActiveX control, the attempt is ignored.

FOE variables are frozen at their last value when the FOE is set to the Stop
mode. For example, the InCascade variable used in the PID FOE may be
TRUE even when its associated loop is not running. When you are monitoring
a variable, be sure to monitor the program Mode system variable as well, in
order to verify that the contents of the variable are correct. Except for forced
values, FOE values are initialized when they are downloaded, even during a
smart download. Forced values remain forced during a smart download.
Retentive values of the FOE are reloaded with their last saved values when the
runtime engine is configured to restart automatically (Last, Pause, Run mode)
after a system reboot.

Note For help in designing/developing FOEs, contact your distributor to
obtain the InControl Factory Object Toolkit.
Wonderware InControl Environment User’s Guide

Running a Project 121
C H A P T E R 8

Running a Project

This chapter describes the InControl runtime environment: toolbar items, menu
options, screen fields, etc.

Contents
• Selecting Runtime Options

• Connecting to the Runtime Engine

• Checking the Connected Node

• Using the Runtime Engine Monitor

• Using the Runtime Engine Icons

• Using the Runtime Engine Monitor Commands

• Running/Exiting the Runtime Engine Monitor

• Validation and Download

• Validating a Project

• Downloading a Project

• Validating an Individual Program

• Downloading an Individual Program

• Project/Program Execution

• Stopping a Project

• Stopping a Program

• Project/Program Execution Order

• Debugging a Program

• Monitoring Program Variables

• Checking the Wonderware Logger

• Using the Runtime Engine System Variables
Wonderware InControl Environment User’s Guide

122 Chapter 8
Selecting Runtime Options
After designing the application programs within the InControl development
environment, you execute the programs within the runtime environment.
Programs go through three phases as they enter the runtime environment:

• Validation—a program is checked for syntax errors and compiled.

• Download—a program is loaded to the runtime engine.

• Run—a program is executed by the runtime engine.

You can validate, download, and run an individual program or an entire
project. One InControl hardware unit supports one instance of the runtime
engine, which can run one project at a time. However, you can download
projects to runtime engines that are running on multiple hardware units.

For more information about running multiple projects, see "Running Multiple
Projects" in the InControl System Administration chapter.

You can select all the InControl runtime options from the menu bar or from the
Runtime toolbar, which appears when you have connected to the runtime
engine. This chapter describes how to use these tools based on selections that
you make from the menu bar. To avoid confusion, only one method is
described in this manual.

Runtime Toolbar Commands

Runtime
Menu
Command

Toolbar
Icon Description

Connect /
Disconnect

Connects the Development environment to the
runtime engine. The engine runs continually as a
Windows service, and whether it actually
executes a program as it runs, depends on its
mode of operation (Run, Stop, etc.).
When the runtime engine is connected, the icon
is depressed and the option is "Disconnect,"
which disconnects the Development
environment from the runtime engine. If you
close (exit) the Development environment, the
runtime engine continues to run.

Configure n/a Displays the Offline Runtime Engine
Properties dialog box if not connected to the
runtime engine.
Displays the Online Runtime Engine
Properties dialog box if connected to the
runtime engine.

Report Status n/a Provides runtime engine status data, such as
current project, time stamp, scan time, mode,
processor utilization, faulted programs, I/O
faults, etc.
This data appears in the Output window and the
Wonderware Logger.
Wonderware InControl Environment User’s Guide

Running a Project 123
Clear Faults n/a Sets faulted programs to Pause mode, clears I/O
faults, and clears runtime engine error status bits,
such as RTEngine.ScanOverrun.

Validate Project Validates all programs in a project. All modified
programs are saved to the hard disk

Download
Project ¹

Download all programs in a project to the
Runtime Engine. Modified programs are saved
to the hard disk. Programs are validated if
necessary.

Upload Project
Values

n/a For all programs, replace defined initial values
(for all local and global variables) with current
values in the runtime engine. Does not upload
I/O variables, arrays, or values that you cannot
define during configuration, e.g., the Mode
symbol. The Output window displays data that is
uploaded.

Run Project ¹ Run all programs in a project. Programs are
validated and downloaded if necessary. All
modified programs are saved to the hard disk.

Pause Pauses all programs that are currently being run
by the runtime engine. The I/O continues to be
updated.

Single Scan Executes a single scan of the runtime engine. I/O
is updated, then all programs in a project that are
currently downloaded to the runtime engine are
executed one scan. Can only be done while
runtime engine is paused.

Stop Stops all programs that are currently being run
by the Runtime Engine. Programs are unloaded
from memory. The I/O goes to the state defined
in the configuration for each I/O board.

Validate
Program

Validates selected program. If program was
modified, it is saved to the hard disk.

Download
Program ²

Downloads selected program to the Runtime
Engine. If necessary, the program is validated. If
program was modified, it is saved to the hard
disk.

Upload
Program Values

n/a For currently selected program, replace defined
initial values of local variables with current
values in the runtime engine. Does not upload
arrays, or values that you cannot define during
configuration, e.g., the Mode symbol. The
Output window displays data that is uploaded.

Run Program ² Runs the selected program. Program is validated
and downloaded if necessary. If program was
modified, it is saved to the hard disk.

Runtime
Menu
Command

Toolbar
Icon Description
Wonderware InControl Environment User’s Guide

124 Chapter 8
Pause Program Pauses a program that is currently being run by
the Runtime Engine. The I/O continues to be
updated.

Single Scan
Program

Executes a single scan of the program. I/O is
updated and then the selected program is
executed one scan. Can only be done while the
program is paused.

Stop Program Stops a program and unloads it from memory.
I/O is unaffected.

1 Programs and I/O drivers that have been excluded from the project load
on their property sheets are not downloaded.

2 Any configured I/O drivers are also downloaded to the runtime engine.

Runtime
Menu
Command

Toolbar
Icon Description
Wonderware InControl Environment User’s Guide

Running a Project 125
Connecting to the Runtime Engine
The development environment must be connected to the runtime engine before
you download or run a program/project.

Note The runtime engine is a Windows service and starts automatically when
you power up the hardware unit.

The runtime engine to which you connect can be located on either the local or a
remote computer node. You specify the node in the Runtime Engine Properties
dialog box, described in "Configuring the Runtime Engine" in the "InControl
System Administration" chapter. To check the current target platform, right-
click RTEngine in the Project window and select Properties.

To connect to the runtime engine:

• On the Runtime menu, click Connect. After you connect, this option
toggles to Disconnect.

You can also click Connect Runtime Engine on the runtime toolbar to
connect to the runtime engine.
Wonderware InControl Environment User’s Guide

126 Chapter 8
Checking the Connected Node
After connecting to the runtime engine, you can check the Status Bar and
verify the computer node to which the Development environment is connected.
In the following figure, the runtime engine is running on a node called
NDYB1.

Identifying the Connected Node

If you place the cursor over the node name, the Tip help displays the name of
the project that is running. In the following figure, the project called 957,
which was developed on a remote node called YB2, is running on the local
node.

Identifying the Running Project

You can also check the node and project by reading the value of these two
runtime engine symbols: NodeName and ProjectName. Use these symbols to
pass node and project names to another InControl program or to an HMI.

For example, to display the name of a project (called 923) and the node where
it is executing (called DYB2), in the Watch Window, add the following
symbols to the Watch Window: RTEngine.ProjectName and
RTEngine.NodeName. The following figure shows the symbols as they appear
in the Watch Window.

Displaying Project Information
Wonderware InControl Environment User’s Guide

Running a Project 127
Using the Runtime Engine Monitor
The runtime engine monitor is associated with the runtime engine on the local
computer. You can use the monitor to send commands to and check the status
of the local runtime engine. The runtime engine monitor icon is located in the
task bar, as shown below.

Location of Runtime Engine Monitor Icon

Note InControl supports only one instance of the runtime engine on a
computer.

Do not confuse the runtime engine monitor for the local node with the
connected RTE indicator for the runtime engine to which the Development
environment is connected. The runtime engine monitor, which is located on the
task bar, is associated only with the local runtime engine. The connected RTE
indicator, which is located on the InControl Status Bar, is associated with the
runtime engine to which the Development environment is connected. This
could be either the local node or a remote node.

Location of Connected RTE Indicator
Wonderware InControl Environment User’s Guide

128 Chapter 8
Using the Runtime Engine Icons
The runtime engine monitor icon and the connected RTE indicator for the
runtime engine to which the Development environment is connected have the
following color codes:

• Red (square) indicates the Stop mode.

• Yellow (pause) indicates the Pause mode.

• Green (arrow) indicates the Run mode.

When variables are forced, the runtime engine monitor icon has a lock symbol:

InControl indicates that a warning or error message has been sent to the Output
window and the Wonderware Logger with a yellow diamond. This icon also
appears when a program enters the Fault mode or when the RLL MSGW or
Structured Text MSGWND functions execute.

InControl indicates a fault condition with the following symbol.

For information about clearing these fault conditions, see "Clearing Runtime
Engine Fault Mode " in the "InControl System Administration" chapter.

Using the Runtime Engine Monitor Commands
You can place the cursor over the runtime engine monitor icon and right-click.
The menu shown below appears. The check mark indicates the current mode.

The commands are described in the table that follows.
Wonderware InControl Environment User’s Guide

Running a Project 129
Runtime Engine Monitor Menu

Menu
Options Description
Configure Displays the Online Runtime Engine Properties dialog

box, described in "Setting Scan Times" in the "InControl
System Administration" chapter).

View Logger Displays the Wonderware Logger, which keeps a record of
runtime messages. These messages also appear in the
Output window. For more information, see "Checking the
Wonderware Logger."

Watch Window Displays the Watch window. This is a stand-alone version
of the Watch window and it is not necessary to open the
Development environment to access it. For more
information about the standalone Watch window, see
"Using the Stand-Alone Watch Window."

Report Status Provides runtime engine status data, such as current project,
time stamp, scan time, mode, processor utilization, faulted
programs, I/O faults, etc. This data appears in the Output
window and the Wonderware Logger.

Clear Faults Sets faulted programs to Pause mode, clears I/O faults, and
clears runtime engine error status bits, such as
RTEngine.ScanOverrun.

Reload Project Loads the last project that was successfully downloaded,
including any changes. A stopped program is not reloaded.
I/O goes to the state defined in the configuration for each
I/O board.

Set Stop Stops all programs that are running. The I/O goes to the
state defined in the configuration for each I/O board.
Programs are unloaded from memory. To run them again,
click Reload Project on the Runtime Engine Monitor
menu and then click Set Run.

Set Pause Pauses all programs that are running. To run them you can
click Run on the Runtime Engine Monitor menu or Run
Project / Program on the Runtime menu of the standard
menu bar in the Development environment.

Set Run Run all programs currently loaded in the runtime engine.
About Engine
Monitor

Displays the About Runtime Engine dialog box.

Exit Monitor Removes the icon from the screen and puts the runtime
engine into Stop mode.
Wonderware InControl Environment User’s Guide

130 Chapter 8
Running/Exiting the Runtime Engine Monitor
The runtime engine monitor appears in the Startup directory and begins
running automatically if the runtime engine service is running when you log on
to the Windows operating system. If you exit the runtime engine monitor,
follow one of the procedures below to restart it.

To start the runtime engine monitor from the menu bar:

Connect to the runtime engine and click Download Project (Download
Program) or Run Project (Run Program) on the Runtime menu.

To start the runtime engine monitor from the Taskbar:

Click Start on the Taskbar, then click Runtime Engine Monitor under
InControl.

Starting the runtime engine service also starts the runtime engine monitor.

When you exit the runtime engine monitor, any programs that are running are
stopped. The icon is always displayed when programs are loaded or running
and you are logged on to the Windows operating system.

To exit the runtime engine monitor:

1. Right-click the runtime engine monitor icon to display the menu.

2. Click Exit Monitor. If programs are running, you are prompted to confirm
that they be stopped.

The icon is removed.

WARNING! In the unlikely event that the runtime engine terminates
abnormally, the runtime engine monitor icon may still remain visible, although
it will display the Fault mode icon. With the runtime engine stopped, factory
output devices may operate unpredictably with the potential risk of death or
injury to personnel and/or damage to equipment. It is highly recommended that
you hardwire alarms to indicate abnormal operation by the factory process.
Wonderware InControl Environment User’s Guide

Running a Project 131
Validation and Download
You can validate a project/program, regardless of the operating system used by
the target runtime engine. Note that you can change the runtime engine target
before validating (right-click the runtime engine icon in the Project Window to
display the Properties dialog box). This is useful when you develop and test a
project on a computer using the Windows operating system but intend to
download and run the project on a computer that uses a different operating
system.

System operation is slightly different if you validate and download an
individual program instead of a project. When you work at the project level, all
programs within the project are affected. When you work at the program level,
actions you take on an individual program act on that program and may
possibly affect other programs within the project. Therefore, procedures for
validation and downloading for programs and projects are described
separately.

• Project validation is described in "Validating a Project."

• Program validation is described in "Validating an Individual Program."
Wonderware InControl Environment User’s Guide

132 Chapter 8
Validating a Project
You can validate all the programs within a project any time during the project
development. It is not necessary for the Development environment to be
connected to the runtime engine when you validate a project. This allows you
to validate a project that you are developing on a Windows system but intend
to run on a computer using another operating system.

Typically, you use the Project Validation option to check for syntax errors in
programs and to compile them without downloading and running them.

To validate a project:

1. Click Validate Project on the Runtime menu. The Validate Project
dialog box appears.

2. Select the appropriate validation option, as described below. The programs
are saved as needed and validated.

• To validate all programs, whether or not they have been changed, select
Full Validate.

• To validate only programs that have been changed, select Smart Validate.

Optional. Check the Enable Debug checkbox to enable any Structured
Text BREAK functions that have been programmed, or to use the
Breakpoint feature in Structured Text programs. The BREAK function
causes an SFC or STL program to pause when program flow encounters
the BREAK. You must also check the Enable Debug checkbox if you
want to single-step a program. Note that execution time is slower when the
Debug feature is enabled.

Optional. Check the Create Executable Archive checkbox to create a file
containing the compiled project. You can use the file as an archive or copy
it to a node where you can run it.

For more information about using the archive file, see "Transferring/Archiving
Project Data" in the InControl System Administration chapter.

3. Check the Output window for messages. A system message reporting a
failed validation and showing the location of the errors is shown in the
following figure:

Output Window after Project Validation

If a program fails validation, refer to the error messages in the Output
window and make the appropriate changes in your program code. Note
that all the messages may not be visible, and you may need to scroll back
to view additional messages.
Wonderware InControl Environment User’s Guide

Running a Project 133
Note The Smart Validate feature does not remove any symbols from the
runtime engine when they have already been downloaded. Symbols are
removed only when you set a Project to the Stop mode or you do a Full Restart.
Therefore symbols that you deleted in the Symbol Manager are still visible in
the Watch window. You can modify them in the Watch window although this
will have no effect on the execution of your logic.
Wonderware InControl Environment User’s Guide

134 Chapter 8
Downloading a Project
When you download a project, you must connect to the runtime engine first.

To download a project:

1. Connect to the runtime engine.

2. Click Download Project on the Runtime menu.

The Download Project dialog box appears.

3. Select the appropriate download option, as described below, and click OK.
The programs are saved and validated, if needed, and downloaded.

• The following actions require a Full Reload:

Downloading a project configuration (I/O configuration or runtime engine
configuration) that has not been downloaded before.

Editing an I/O Configuration.

Making these modifications to variables, including user-defined types, that
have already been downloaded: changing the data type, the lower element
of an array, or the bit index information.

Changing the offline runtime engine configuration.

• If project configuration data has already been loaded during a previous
download and you do not want to interrupt programs that are currently
running, select Smart Load. All new programs are validated and
downloaded. Programs that are running, and that have been modified, are
paused and replaced by the modified versions; these programs remain
paused. Other programs, which are running, are unaffected. Stopped
programs are validated and downloaded.

If a program is running and you download a modified version of the
program, the original program is paused, even if the new version fails to
download. If the download is successful, the asterisk by the program name
in the title bar is removed.

If you do not want a program to be paused after a new version is
downloaded, click Run Project, not Download Project, on the Runtime
menu. The program is downloaded and set to the Run mode if the
download is successful.
Wonderware InControl Environment User’s Guide

Running a Project 135
4. Check the Output window for messages. A system message reporting a
failed download and showing the location of the errors is shown in the
following figure:

Output Window after Project Download

If a download fails, refer to the error messages in the Output window and
make the appropriate changes in your program code. Note that all the
messages may not be visible, and you may need to scroll back to view
additional messages.

Note If you have included any code for testing or simulating your process and
it writes to I/O input variables, a warning message appears. You can change
this to an error message or prevent its appearing altogether. See "Displaying
Compiler Warnings" in the "InControl System Administration" chapter.

If you download a project using the Smart Load option, local and global
variables that were already downloaded retain their current values and are not
reinitialized. SFCs are restarted.

Note The Smart Load feature does not remove any symbols from the runtime
engine when they have already been downloaded. Symbols are removed only
when you set a Project to the Stop mode or you do a Full Restart. Therefore
symbols that you deleted in the Symbol Manager are still visible in the Watch
window. You can modify them in the Watch window although this will have no
effect on the execution of your logic.

You can exclude a program from project downloads. Right-click a program in
the Project View and select Exclude. This is useful for simulation programs
that you do not normally need to execute, but which you want to keep with the
project.

To set the programs in the project to the Run mode, see "Running a Project."
Wonderware InControl Environment User’s Guide

136 Chapter 8
Validating an Individual Program
You can validate a program, regardless of the operating system used by the
target runtime engine. In addition, you can change the runtime engine target
(right-click the runtime engine icon in the Project Window to display the
Properties dialog box). This is useful when you develop and test a program on
a computer using the Windows operating system but intend to download and
run the program on a computer that uses a different operating system.

To validate a program:

1. Click Validate Program on the Runtime menu. The Validate Program
dialog box appears.

2. Optional. Check the Enable Debug checkbox to enable any Structured
Text BREAK functions that have been programmed, or to use the
Breakpoint feature in Structured Text programs. The BREAK function
causes an SFC or STL program to pause when program flow encounters
the BREAK. You must also check the Enable Debug checkbox if you
want to single-step a program. Note that execution time is slower when the
Debug feature is enabled.

3. Click OK. The program is saved, if necessary, and validated.

4. Check the Output window for messages. A system message reporting a
failed validation and showing the location of the errors is shown in the
following figure:

Output Window after Program Validation

If a program fails validation, check the error messages in the Output window
and make the appropriate changes in your program code. Note that all the
messages may not be visible, and you may need to scroll back to view
additional messages.
Wonderware InControl Environment User’s Guide

Running a Project 137
Downloading an Individual Program
When you download a program, you must connect to the runtime engine first.
Any configured I/O drivers are also downloaded along with the program.

To download a program:

1. Connect to the runtime engine.

2. Download any other POUs (functions, function blocks, other programs,
etc.) on which the program depends. Otherwise, the program will fail to
download.

3. Click Download Program on the Runtime menu. The Download
Program dialog box appears.

4. Select the appropriate download option and click OK. The program is
saved and validated, if needed, and downloaded.

• The following actions require that you select Reload Runtime Engine.
Note that this option unloads all currently loaded programs and I/O
drivers.

Downloading a project configuration (I/O configuration or runtime engine

configuration) that has not been downloaded before.

Editing an I/O Configuration.

Making these modifications to variables, including user-defined types, that

have already been downloaded: changing the data type, the lower element
of an array, or the bit index information.

Changing the offline runtime engine configuration.

• If project configuration data (I/O configuration or runtime engine
configuration) has already been loaded during a previous download and
you do not want to interrupt programs that are currently running, select
Reload.

If a program is running and you download a modified version of the
program, the original program is paused, even if the new version fails to
download. If the download is successful, the asterisk by the program name
in the title bar is removed.

If you do not want program execution to be interrupted, click Run
Program, not Download Program, on the Runtime menu. The program
is downloaded and it begins to execute upon completing the download.
Wonderware InControl Environment User’s Guide

138 Chapter 8
5. Check the Output window for messages. A system message reporting a
failed download and showing the location of the errors is shown in the
following figure:

Output Window after Program Download

If a program download fails, check the error messages in the Output
window and make the appropriate changes in your program code.

Note If you have included any code for testing or simulating your process and
it writes to I/O input variables, a warning message appears. You can change
this to an error message or prevent its appearing. See "Displaying Compiler
Warnings" in the "InControl System Administration" chapter.

If you reload a program that was previously downloaded, local and global
variables that were already downloaded retain their current values and are not
reinitialized. SFCs are restarted.

To set the mode of a program to Run, see "Running an Individual Program."
Wonderware InControl Environment User’s Guide

Running a Project 139
Project/Program Execution
System operation is different if you run a project instead of an individual
program. Therefore, procedures for running programs and projects are
described separately.

Running a Project
After the programs in the project are successfully validated and downloaded to
the runtime engine, their mode is set to Pause. Note that if you click Run
Project instead of Download Project, the programs are set to the Run mode
after they are downloaded.

InControl indicates a program’s mode in the Project window as shown in the
following figure (all programs are running).

When a program is open in an editor, InControl also indicates the program’s
mode in the program’s Title bar, as shown in the following figure.

WARNING! Running a program that has not been thoroughly tested on a
system connected to field devices may cause unpredictable operation by the
devices.
Unpredictable operation by field devices may cause injury or death and/or
damage to equipment. It is highly recommended that you test your program
before running it on a system that controls a factory process. Verify the correct
operation of every program element or line of code. Note that some error
conditions are not detected until run time and these may disable some or all of
your program logic.
For more information about troubleshooting a program, see "Debugging a
Program."

To run the programs in a project:

1. Click Run Project on the Runtime menu.

The Run Project dialog box appears.

2. Select the appropriate run option.
Wonderware InControl Environment User’s Guide

140 Chapter 8
• If the project configuration (I/O configuration or runtime engine
configuration) has changed, select Full Restart. Note that all programs
are restarted, including SFCs that have completed execution. The I/O goes
to the state defined in the configuration for each I/O board.

• To reload only programs in a project that you have modified, select Smart
Start. This option has no effect on other programs that are running, but
you can choose it only if you have made no changes to the I/O
configuration or the runtime engine configuration. Variables in programs
are not initialized except for those used by FOEs.

• To ignore changes made in any program, select Continue.

3. Click OK to confirm. All modified programs are saved, validated,
downloaded, if needed, and set to RUN mode. An asterisk by the program
name in the Project window or in the window title bar indicates that the
program has not been saved, and/or is different from the copy running in
the runtime engine.

When the programs in a project change to the Run mode, the connected RTE
indicator, located in the InControl status bar, turns green.

Note Only one project can run on the runtime engine at a time. However, you
can create/edit programs in one project while the programs in another project
are running. In addition, you can run projects on runtime engines installed on
other computers, as described in "Running Multiple Projects" in the "InControl
System Administration" chapter.

For a description of the order in which programs are executed, see
"Project/Program Execution Order."

Running an Individual Program
After a program is successfully validated and downloaded to the runtime
engine, the mode of the program is set to Pause. Note that if you click Run
Program instead of Download Program, the program is set to the Run mode
after it is downloaded.

InControl indicates a program’s mode in the Project window as shown in the
following figure (RLL1 is paused; SFC2 is running).

When a program is open in an editor, InControl also indicates the program’s
mode in the program’s Title bar, as shown in the following figure.
Wonderware InControl Environment User’s Guide

Running a Project 141
WARNING! Running a program that has not been thoroughly tested on a
system connected to field devices may cause unpredictable operation by the
devices.
Unpredictable operation by field devices may cause injury or death and/or
damage to equipment. It is highly recommended that you test your program
before running it on a system that controls a factory process. Verify the correct
operation of every program element or line of code. Note that some error
conditions are not detected until run time and these may disable some or all of
your program logic.
For more information about troubleshooting a program, see "Debugging a
Program."

To run a program:

1. Select the program (click the program name in the Project window, or
make it the active program in the editor) and click Run Program on the
Runtime menu.

The Run Program dialog box appears.

2. Select the appropriate run option.

• If the project configuration (I/O configuration or runtime engine
configuration) has changed, select Restart Runtime Engine. This option
stops all programs that are running and only restarts the program being
downloaded, plus I/O. The I/O goes to the state defined in the
configuration for each I/O board.

• If you want the program variables to keep their current values, select
Restart. Variables in programs are not initialized except for those used by
FOEs. This option has no effect on any other programs that are running.

• To continue executing the version of the program already on the runtime
engine, select Continue. Any modifications that were made in the
program are saved in the program file, but are not downloaded.

3. Click OK to confirm.

When the program changes to the Run mode the Runtime Engine Monitor
icon, located in the task bar, is green to indicate that it is in the Run mode. Any
configured I/O drivers are also downloaded to the runtime engine and begin to
run.

Note You can edit a program, or other programs, while the program is
running. In addition, you can run projects on runtime engines installed on other
computers, as described in "Running Multiple Projects" in the "InControl
System Administration" chapter.

For a description of the order in which programs are executed, see
"Project/Program Execution Order."
Wonderware InControl Environment User’s Guide

142 Chapter 8
Stopping a Project
When you stop a project, all programs are unloaded from the runtime engine
and the I/O output points are disabled. The individual I/O drivers determine the
actual state of the outputs.

To stop project execution:

• Click Stop on the Runtime menu,

OR

• Click Stop Runtime Engine on the Runtime toolbar:

OR

• Click Set Stop on the menu for the runtime engine monitor icon.

The Stop Runtime Engine dialog box appears.

When you click OK all programs are stopped. Because they are unloaded from
the runtime engine, you must download them from the Development
environment again before you can run them. Either click Run Project on the
Runtime menu or click Run Project on the Runtime toolbar. You can also
click Reload Project on the runtime engine monitor menu.

Note The Set Run option on the menu for the runtime engine monitor icon
runs only projects that have been paused, not projects that have been stopped.

Program variables are frozen at their last value when a program is set to the
Stop mode. For example, the InCascade variable used in the PID FOE may be
TRUE even when its associated loop is not running. When you are monitoring
a program variable, be sure to monitor the program Mode system variable as
well, in order to verify that the contents of the variable are valid.

InControl automatically sets the value of the runtime engine system variable
RTEngine.Mode to STOP (1) when the runtime engine is stopped. You can
change the mode of a project from the Watch window or other external
program by writing one of the following values to the RTEngine.Mode system
variable: PAUSE (2), SCAN (3), RUN (5), or FAULT (6). However, you cannot
write STOP (1) or any other values to RTEngine.mode.
Wonderware InControl Environment User’s Guide

Running a Project 143
Stopping a Program
When you stop a program, the program is unloaded from the runtime engine.
The I/O points are not affected.

To stop program execution:

1. If the program is open in the editor window, select it.

2. Click Stop Program on the Runtime menu,

OR

Click Stop Program on the Runtime toolbar:

The Stop Program dialog box appears.

When you click OK the program is stopped. Because it is unloaded from the
runtime engine, you must download it again before you can run it. Either click
Run Program on the Runtime menu or click Run Program on the Runtime
toolbar:

Note The Set Run option on the menu for the runtime engine monitor icon
runs only projects that have been paused, not projects that have been stopped.

You can also stop a program by selecting it in the Project View before clicking
Stop Program. If another program is open and selected in the editor window, it
is the program that is selected in the Project View that is stopped.

Program variables are frozen at their last value when a program is set to the
Stop mode. For example, the InCascade variable used in the PID FOE may be
TRUE even when its associated loop is not running. When you are monitoring
a program variable, be sure to monitor the program Mode system variable as
well, in order to verify that the contents of the variable are valid.

The value of the program Mode system variable is set to 1 when the program is
stopped.
Wonderware InControl Environment User’s Guide

144 Chapter 8
Project/Program Execution Order
You can specify the order within the scan in which programs are executed, and
you assign a priority level to each program: Normal Scan and Low Priority.

For more information about the timeline and program execution, see "Runtime
Engine Timeline" in the "InControl System Administration" chapter.

Setting Program Order in the Execution View
You can specify the order within the scan in which programs are executed if
you download the programs as a project. When you select the Execution View
in the Project window, programs are displayed in the order that they are
executed.

To change the execution order:

1. Display the Execution View.

2. Click a program name.

3. Drag the program to another location in the list of programs. In the
following figure RLL5 has been moved above STL1.

Changing Execution Order

Note these guidelines.

• If you download programs individually, instead of as a project, the
programs are executed in the order that you download them. If you later
download the project, execution order is determined by the order of the
programs in the Execution View.

• If you change the program order in the Execution View, you must
download the project for that order to be maintained. Use either the Smart
Load or the Smart Start option.

• If you download a project and then download a version of a program that
is currently running in the project, execution order for the program is
preserved. However, if you create a new program in the project and then
download the new program, it goes to the bottom of the queue and runs
after the other programs in the project.
Wonderware InControl Environment User’s Guide

Running a Project 145
Setting Program Priority in the Execution View
You can specify an execution priority for a program: Normal Scan or Low
Priority. InControl runs a program set at Low Priority only if there is time
remaining after all other tasks in the timeline have been done. During the low-
priority time slice of a scan, as many programs are executed as possible, with
the execution of one program resuming after the previously executed low-
priority program has completed.

For more information about the timeline and how programs are executed, see
"Runtime Engine Timeline" in the "InControl System Administration" chapter.

To change the execution priority:

1. Display the Execution View.

2. Click a program name.

3. Drag the program to the new position (Low Priority or Normal Scan) on
the List of Tasks.

In the following figure, SFC4 has been assigned Low Priority.

Changing Program Priority

Note No flags are set if a low-priority program fails to execute because the
scan time has been set too low. You must include code in your program to
check whether the program executes as needed.
Wonderware InControl Environment User’s Guide

146 Chapter 8
Debugging a Program
Use the options described in this section to check the program as it is run.

Checking the Status Bar
The Status bar, illustrated in "Runtime Window" of the "InControl
Environment" chapter, displays the status of the runtime engine that is running
the project, the name of project downloaded to the runtime engine, the node to
which the Development environment is connected, as well as other program
information.

Checking the Program Mode
During the course of its execution, a program may do an illegal operation and
enter the Fault mode.

A program fault is different from a runtime engine fault. For information about
the program and runtime engine Fault modes, see "Clearing Program Fault
Mode" in the "InControl System Administration" chapter.

If a program enters the Fault mode, "Fault" appears in the program's title bar
and in the Project View. InControl sets the Mode system variable for the
program to six, writes a message to the Output window and the Wonderware
Logger, and superimposes the following symbol over the runtime engine
monitor icon:

To restart a program in the Fault mode:

1. Clear faults. On the Runtime Engine Monitor menu, click Clear Faults.
This sets the program to the Pause mode. If other programs are running,
they continue to run and the runtime engine remains in the Run mode.

You can also set the program to the Run or Pause mode to clear faults.

2. Set the program to the Run mode.

3. If the program returns to the Fault mode, you need to check program logic
and possibly the integrity of your hardware. If you change the program,
download it again and run it.

Note InControl writes a message to the Output window and the Wonderware
Logger when a program enters the Fault mode.

You can use one of the runtime engine functions to report runtime engine status
and clear faults for a program or a project. For a program, use the following
syntax:

RTEngine.ExecProgramCommand (“program name”, <command>)

where <command> equals ReportStatus to report runtime engine status
information, and <command> equals ClearFaults to clear program faults.
Wonderware InControl Environment User’s Guide

Running a Project 147
For a project, use the following syntax:
RTEngine.ExecProjectCommand (<command>)

where <command> equals ReportStatus to report runtime engine status
information, and <command> equals ClearFaults to clear program faults.

For more information about clearing faults, see "Clearing Fault Mode and
Error Conditions" in the InControl System Administration chapter.

Example 1: to examine runtime engine status data and to report faults for a
program called STL1, enter the following line in a program:
RTEngine.ExecProgramCommand(“STL1”,ReportStatus);

Be sure to use quotation marks around the program name.

Example 2: to clear faults for a project called Bldg_A, enter the following line
in a program:
RTEngine.ExecProjectCommand(ClearFaults);

Note These methods do not clear a runtime engine Fault.
Wonderware InControl Environment User’s Guide

148 Chapter 8
Single Scanning a Project/Program
The Single Scan option allows you to execute a single program or all programs
in a project for one complete scan by the runtime engine. Execution follows the
timeline that is described in "Runtime Engine Timeline" of the "InControl
System Administration" chapter. Order of program execution is based on the
order of the programs in the Execution View. A project/program must be in the
Pause mode before you can execute a single scan.

To execute a single scan:

1. Set the project or program to the Pause mode.

2. Optional. Open a Watch window, and add the variables that you need to
monitor as the programs run.

3. Click Single Scan (or Single Scan Program) on the Runtime menu. All
paused programs enter the Run mode during the next scan by the runtime
engine, remain in the Run mode during the scan, then reenter the Pause
mode.

Using Breakpoints
You can pause program execution at a selected line of code in a Structured Text
program. Program flow pauses before executing the selected line. For program
flow to continue, you can run, unpause, single scan, or single step the program.
You can place breakpoints at multiple lines of code, and when program flow
continues, it pauses at the next breakpoint.

You must check the Enable Debug checkbox in either of the following two
dialog boxes prior to validating the program before you can set a breakpoint in
a Structured Text program. Checking one checkbox automatically checks the
other.

• The Validate Project or the Validate Program dialog box. On the
Runtime menu, click Validate Program to display this dialog box.

• The Properties dialog box for each program that you want to step. In the
Project View, right-click the program and click Properties to display this
dialog box.

A breakpoint operates in the same way as the Structured Text BREAK
statement. However, you must remove the BREAK statement for the program
or uncheck one of the Enable Debug checkboxes when you are finished
troubleshooting the program. You can easily add and remove breakpoints at
runtime by clicking Toggle Breakpoint and Clear All Breakpoints on the
Runtime toolbar. Note that execution time is slower when the Debug feature is
enabled.

Note Program flow does not stop at a breakpoint in a function if the function
is running in the background.
Wonderware InControl Environment User’s Guide

Running a Project 149
Stepping a Program
The Step Program option allows you to execute a line of logic in a single
program (RLL, SFC, or Structured Text). A program must be in the Pause
mode before you can step it. You must check the Enable Debug checkbox in
either of the following two dialog boxes prior to validating the program before
you can step through these programs.

• The Validate Project or the Validate Program dialog box. On the
Runtime menu, click Validate Program to display this dialog box.

• The Properties dialog box for each program that you want to step. In the
Project View, right-click the program and click Properties to display this
dialog box.

Each time you step the program, programs are executed as follows:

• For an RLL program, one rung of logic is executed.

• For a Structured Text program, one line of code is executed.

• For an SFC program, one line of code of every active Step is executed. All
active Actions are executed completely.

• For an FOE, the Step Program option is not supported.

Note Single-stepping any program may cause execution order to differ from
that of a normally running program. This is due to the continuous execution of
I/O, other programs, and in the case of SFCs, Actions.

To step a program:

1. Select the program and set it to Pause mode.

2. Optional. Open a Watch window for the program and add any variables
that you need to monitor as the program runs.

3. Click Step Program on the Debug menu. The program enters the Run
mode during the next scan by the runtime engine, remains in Run mode
for one scan, then reenters the Pause mode. Any I/O controlled by the
program is updated when the program is stepped.

You can use a runtime engine function to single-step one or more programs.
Use the following syntax:
RTEngine.ExecProgramCommand (“program name”,

RTECommand.Step)

For example, to single-step three programs, called STL1, STL2, and RLL5,
enter the following lines in another program that you are using to troubleshoot
your code:
RTEngine.ExecProgramCommand(“STL1”,RTECommand.Step);

RTEngine.ExecProgramCommand(“STL2”,RTECommand.Step);

RTEngine.ExecProgramCommand(“RLL5”,RTECommand.Step);
Wonderware InControl Environment User’s Guide

150 Chapter 8
Note A program cannot single-step itself. Always single-step one or more
programs from another program. In addition, remember that a program must be
in the Pause mode before you can single-step it. You can set a program to the
Pause mode by writing to the program’s Mode system variable.

WARNING! Specifying invalid values for the command parameter may cause
unpredictable I/O operation with the potential risk of death or injury to
personnel and/or damage to equipment. Use only the values listed above for
the command parameter.

Use the Step In and Step Out commands on the Debug Menu to debug code in
functions.

In the following example, program execution is paused at the line of code with
the function call. If you click Step on the Debug menu, program flow
continues at the line following the function call.

Step Example 1

In the following example, program execution is paused at the line of code with
the function call. If you click Step In on the Debug menu, program flow
continues at the first line in the function.

Step Example 2
Wonderware InControl Environment User’s Guide

Running a Project 151
In the following example, program execution is paused at a line of code within
the function. If you click Step Out on the Debug menu, program flow
continues at the line following the function call in the program making the
function call.

Step Example 3

Click Show Call Stack to display the current values of local symbols and
parameters for a function that has been called. If multiple functions have been
called, you can select the function that you need to monitor.
Wonderware InControl Environment User’s Guide

152 Chapter 8
Monitoring Program Variables
The Watch window, shown in the following figure, displays variables and their
status at runtime. You can open one Watch window for each project, and for
each window you can create one or more tables of variables to be monitored.

Within a table, you can monitor variables from one or more programs,
including local, global, and system variables, or combinations of each. You
cannot monitor the values of variables or parameters used in a function or
procedure.

Watch Window Displaying Two Variables

Display or hide the Watch window as needed by clicking Watch/Force
Variables on the View menu or by clicking the Watch window tool on the
Runtime toolbar:

You can also run a stand-alone version of the Watch window. It is not
necessary to open the Development environment to access it. On the runtime
engine monitor icon, click Watch Window. It is also available from the Start
menu on the Windows task bar.

Adding a Variable to the Watch Window
To display a variable in the Watch window:

1. Click Add Symbol on the Watch window toolbar.

The Symbol Manager dialog box appears.

2. Click the name of one or more variables to add. You can right-click a
variable to view a read-only display of its properties.

3. Click OK. The selected variables appear in the Watch window.

For BYTEs, WORDs, DWORDs, SINTs, DINTs, REALs, and LREALs, you can
choose to display the value in binary, octal, decimal, or hexadecimal formats.
Click the name of the variable and then choose the format from the Format tool
on the Watch window toolbar.
Wonderware InControl Environment User’s Guide

Running a Project 153
Watch Window – Changing Format

If you add a variable that has been defined as a constant to the Watch window,
the variable appears as a dimmed value. You cannot modify the variable in the
Watch window.

To view a variable that is local to a macro, use the following syntax:
<Parent SFC Program>.<Macro Step Name>.<Local Symbol Name>

If a variable has an initial value in the Symbol Manager, the format in the
Watch window matches the format in the Symbol Manager. For example, if the
initial value is 2#1101_0110, then the default format in the Watch window is
binary.

Adding Multiple Variables to the Watch Window
Instead of selecting variables individually to display in the Watch window, you
can add variables that are related by group. For example, you can add all
variables used in a program, or all the member variables in a structure.

To display all program variables in the Watch window:

1. Place the cursor in the Symbol field and type in the name of the program.

2. Press Enter. The program variables appear in a collapsed tree structure.

Wonderware InControl Environment User’s Guide

154 Chapter 8
3. Expand the tree and all the variables of the program appear.

Watch Window - Adding Multiple Variables 2

Removing a Variable
To remove a variable from the Watch window:

1. Click the name of the variable.

2. Click Remove Symbol on the Watch window toolbar:

The variable is removed from the Watch window and deleted from the
.WCH file.

You cannot delete variables individually if you added them as a group. You
must delete the entire goup by clicking the top-level of the group beforing
clicking Remove Symbol.
Wonderware InControl Environment User’s Guide

Running a Project 155
Adding a Table of Variables to the Watch Window
To add a table to the Watch window:

1. Click Save Current Table on the Watch window toolbar.

The Watch Tables dialog box appears displaying the default table called
Watch1.

2. Click New to add a table. When the New dialog box appears, enter a name
for the new table and click OK. Click OK again to return to the Watch
window.

3. Add the variables to the Watch window.

Any tables that you create are saved when you display another table or exit
InControl. The tables are saved in the same directory where the project files are
located.

To make a copy of an existing table, click Save As and enter a name for the
copy in the Save As dialog box.

As an alternative to creating the tables within the Watch window, you can
create an ASCII file with any text editor.

To create a table with an ASCII text editor:

1. Open the text editor.

2. Enter the names of the variables using the following formats.

For a local variable, use the program name, a period, and then the variable
name. For the local variables in the example below, the program names are
Bldg1 and B3.

For a global variable, use only the variable name.

For a runtime engine system variable, use the system name, RTEngine,
followed by a period and the variable name.

For a user-defined variable, use the name of the variable of the user-
defined data type, followed by a period and the member name.

The following figure shows an example.

Watch Window - Editing Table
Wonderware InControl Environment User’s Guide

156 Chapter 8
3. Save the file with the extension .WCH and place it in the project directory.
The file name will appear in the table list with the other table names.

Modifying/Forcing a Variable
To modify or force a variable:

1. Click the name of the variable.

2. Click Modify Value on the Watch window toolbar.

The Modify Value dialog box appears.

3. To write a new value to the variable, enter the value (select TRUE or
FALSE for a Boolean data type) and click Write. The new value is written
to the variable. Note that the value may change as the program runs.

To force a variable to a value, enter the value (select TRUE or FALSE for
a Boolean data type) and click Force. The variable is forced to the new
value, and the value does not change as the program runs until you force it
to a new value or unforce it.

When you enter a value, you can separate characters with underscores. For
binary and hexadecimal numbers, the Watch window separates every four
characters with an underscore to improve readability.

When variables are forced, the runtime engine monitor icon has a lock
symbol:

The Status Bar also displays a lock symbol when variables are forced:
Wonderware InControl Environment User’s Guide

Running a Project 157
Note these additional points:

• If you force a bit that is indexed (described in "Assigning a Name to a Bit"
in the "Defining Variables" chapter), only the indexed bit is forced. The
source variable and all other symbols that are indexed to the same
variable, remain unforced. If you write to the source variable, the forced
bit remains unchanged. If you force an indexed bit and then force the
source variable, the second force overrides the first force. That is, when
you unforce the variable, the bit is also unforced.

• If you add a variable that has been defined as a constant to the Watch
window, the variable appears as a dimmed value. You cannot modify the
variable in the Watch window.

• If you have added a variable to the Watch window and then you delete it
from the Symbol Manager, a Smart Download or Smart Restart does not
remove the variable from the Watch window or the runtime engine. In
addition, the Watch window continues to allow you to modify the variable.
Note that if your program is affected by the deletion of the symbol, it will
fail to validate until you modify the logic appropriately.

For more information about the behavior of variables at runtime, see the
"Defining Variables" chapter.

Note The Administrator or Engineer security level is required in order to
force or modify a variable.
A user's security privilege applies to the local node where the user is logged in
and to any remote nodes to which the user can connect.

You have the option of backing up the value of a variable and its forced state to
the hard disk. InControl provides three ways by which you can specify for the
backup to occur.

• If the runtime engine shuts down during a power failure, the value of a
forced variable is copied to the hard disk. Note that the values of any
retentive variables are also saved during a power failure.

The values of retentive and forced variables are not saved unless you are
using an intelligent UPS with the system and you have configured it to
signal InControl of the power failure .

For more information about preparing for power failures, see "Handling
Power Failure" in the "InControl System Administration" chapter.

• You can configure InControl to save retentive and forced variables to the
hard disk periodically. The default frequency of zero disables this feature.
You can change it in the Runtime Engine Properties dialog box,
described in "Setting Scan Times" of the "InControl System
Administration" chapter.

• You can design code in a program to save the value of retentive and forced
variables on demand. For a forced variable, both the value and the forced
state are saved to the hard disk. Use the following syntax:
RTEngine.ExecProjectCommand (SaveRetentive);

The values are only restored when the runtime engine is configured to restart
automatically (Last, Pause, Run mode) after a system reboot. For more
information, see "Restarting Projects Automatically" in the "InControl System
Administration" chapter.
Wonderware InControl Environment User’s Guide

158 Chapter 8
You can write values to the Mode system variable for a program and thereby
control the mode of that program from another program in the same project.
The following table lists the valid values that can be written to the Mode
system variables.

Valid Mode System Variable Values

If you force the Mode variable for a program, other InControl programs are
blocked from writing new values to the variable. In addition, external
programs, such as InTouch, or a Visual Basic application, are also blocked
from writing new values to the variable. The commands on the toolbar and the
Runtime menu override the Mode variable when it is forced. However, any
external programs that are monitoring the variable read only the forced value,
which may be incorrect if the mode has been changed from the toolbar or
menu.

WARNING! When you modify mode variables in a program that uses the
variables to control other programs, be sure that you are aware of the mode
changes that take place in all programs. Unexpected program mode changes
may cause injury or death and/or damage to equipment.

Write This Value ¹ This Action Occurs
PAUSE (or 2) Set program to Paused mode.
SCAN (or 3) Single Scan a program. Program must be paused first.
RUN (or 5) Set program to Run mode.

FAULT (or 6) ² Set program to Fault mode. Be sure that you are fully
informed of the process under control by the program
before setting the mode to Fault.

COMPLETE (or 7) Sets the program mode to Complete. Functionally, the
Complete and Paused modes are equivalent.

1 If you are monitoring the program Mode variable, the following
additional values may be read, although they cannot be written to this
variable:

Unknown (0) Program is unloaded from the runtime engine.
Stop (1) Program is stopped.
Loaded (4) Program is being loaded to the runtime engine.
Program (8) For programs:
The program is loaded to the runtime engine and is ready to run when
called by another program. Applicable to functions, function blocks,
and to FOEs that require function calls to a method in order to run.
Note that the mode of these POUs does not change to Run, even after
they are called.
Program (8) For I/O configurations:
The configuration has been downloaded to a remote node. Automatic
configuration can be done on that remote node while the configuration
is in the loaded mode.

2 For information about clearing a program fault, see "Checking the
Program Mode."
Wonderware InControl Environment User’s Guide

Running a Project 159
Adjusting Update Rate
Set the update rate for the Watch window in the Runtime Engine
Configuration dialog box, online or offline.

To set the Watch window update rate:

1. Click Configure on the Runtime menu.

2. Select either the Online tab or the Offline tab. Changes made on the
Online tab are retained for the current session only. Changes made on the
Offline tab are saved.

3. Enter the update rate in the Update Interval field as shown in the
following figure.

Watch Window - Setting Update Rate

Pausing the Watch Window Update
You can pause the update for the Watch window by clicking Pause Watch
window on the Watch window toolbar. The values are dimmed when the
Watch window is paused.

Unforcing Variables
To unforce a variable, click the name of the variable and click Unforce
Symbol.

You can also unforce a variable from the Modify Value dialog box, described
in "Modifying/Forcing a Variable."
Wonderware InControl Environment User’s Guide

160 Chapter 8
To unforce all forced variables, including variables that have been forced in
other tables, click Unforce All Symbols.

Displaying Forced Variables
To display all variables that have been forced, including variables that have
been forced in other tables, click Show All Forces.

All variables in the project that have been forced are displayed at the top of the
currently displayed table.

Note that displaying another table or exiting InControl causes the currently
displayed table to be saved, including the list of forced variables.

Using the Watch Window on a Remote Computer
You can open and edit a project on a computer when the runtime engine on the
computer is running a different project. If you open the Watch window on this
computer, the symbols that you can add to the Watch window by clicking Add
Symbol are those defined for the project being edited, not the symbols in the
project that is running. However, if you know the names of the symbols used in
the project that is running, you can type them into the Watch window and
monitor their status as the program runs.

As an alternative to typing in each symbol name within the Watch window, you
can create an ASCII file, described in "Adding a Table of Variables to the
Watch Window."
Wonderware InControl Environment User’s Guide

Running a Project 161
Using the Watch Window Menu
You can choose all the Watch window functions from a menu. Place the cursor
within the Watch window and right-click. Click the appropriate function to
select it.

Watch Window - Commands

Menu Bar
Toolbar
Icon Description

Add Add symbol to Watch window.

Remove Remove symbol from Watch window.

Insert Empty Row n/a Insert a row between variables.
View Symbol
Definition

n/a Display symbol definition in the Symbol
Manager.

Modify Value Write or force a value to selected variable.

Unforce Unforce selected variable.

Unforce All Unforce all variables that have been forced.

Show All Forces Display all variables that have been forced.

Pause Pause the update for the Watch window.

Cut n/a Cut selected item and place it on the
clipboard.
Wonderware InControl Environment User’s Guide

162 Chapter 8
The Watch window supports the standard cut/copy/paste features. This allows
you to do the following:

• Duplicate or move symbols within the Watch window.

• Copy symbols from the Symbol Manager to the Watch window.

• Copy symbols from an external application, such as Excel, or Notepad.

• Copy symbols between multiple instances of the Watch window.

Using the Stand-Alone Watch Window
You can run a stand-alone version of the Watch window. The stand-alone
Watch window operates very similarly to the Watch window that you open
from the Development environment. However, with the stand-alone Watch
window, you can monitor variables during runtime without opening the
Development environment. In addition, you can run multiple instances of the
stand-alone Watch window and monitor the variables on one or more nodes.

To run the standalone Watch window:

1. On the runtime engine monitor icon, click Watch window. You can also
run it from the Start menu on the Task Bar.

2. If a dialog box prompts you for a node, enter the name of the node that you
want to monitor. Depending on the target system, you may need to enter
the TCP/IP address instead.

For the local node, leave the Node field blank.

Copy n/a Copy selected item and place it on the
clipboard.

Paste n/a Paste contents of clipboard.
Format Choose format (binary, octal, decimal, or

hexadecimal) for ANY_INT data types
(BYTEs, WORDs, DWORDs, etc.). If you
change format while the Watch window is
paused, the value currently displayed is
reformatted. That is, a new value is not read
from the runtime engine before reformatting
is done.

Allow Docking ¹ n/a Click to dock or undock the Watch window.

Hide ¹ n/a Remove the Watch window.

1 Option does not appear on the menu when accessed from the stand-alone
Watch window.

Menu Bar
Toolbar
Icon Description
Wonderware InControl Environment User’s Guide

Running a Project 163
3. Verify the project that you intend to monitor. The node name and project
appear in the Status bar at the bottom of the Watch window. If you place
the cursor in the Status bar, the Tip help also displays the name of the
project.

Standalone Watch Window

The menu commands for the stand-alone Watch window are described in the
following table.
Wonderware InControl Environment User’s Guide

164 Chapter 8
Stand-Alone Watch Window Commands

Menu Bar
Option Command

Toolbar
Icon Description

File Project Accesses Project Manager

Connect /
Disconnect

Connects/disconnects the stand-alone
Watch window and the Runtime
environment.

Save n/a Adds symbol to Watch window.
Tables Saves contents of table and displays

list of watch tables.

Add Adds symbol to Watch window.

Remove Removes symbol from Watch
window.

Insert
Empty Row

n/a Inserts a row between variables.

View
Symbol
Definition

n/a Displays symbol definition in the
Symbol Manager.

Modify
Value

Writes or forces a value to a variable.

Unforce Unforces selected variable.

Unforce All Unforces all variables that have been
forced.

Show All
Forces

Displays all variables that have been
forced.

Cut n/a Cut selected item and place it on the
clipboard.

File Copy n/a Copy selected item and place it on the
clipboard.

Paste n/a Paste contents of clipboard.
Exit n/a Closes Watch window.

View Toolbar n/a Displays Watch window toolbar.
Status Bar n/a Displays Watch window Status Bar.
Format Choose format (binary, octal,

decimal, or hexadecimal) for
ANY_INT data types (BYTEs,
WORDs, etc.) or ANY_REAL data
types (REAL, LREAL).

Pause Pause the update for the Watch
window.
Wonderware InControl Environment User’s Guide

Running a Project 165
You can also choose functions for the stand-alone Watch window by placing
the cursor within the Watch window and clicking the right mouse button.
These functions are described in "Using the Watch Window Menu."

Note The Administrator or Engineer security level is required in order to
force or modify a variable.
A user's security privilege applies to any remote nodes to which the user can
connect, as well as to the local node where the user is logged in.

Using the Editor Window
For STL and SFC programs, you can monitor the values of variables from the
editor window. When the program is running, the editor window displays
global variables and variables that are local to the program.

• In an STL program, variables are displayed in the right half of the editor
window when the program goes to the Run mode.

• In an SFC program, variables are displayed in the right half of the editor
window for individual Steps. You must open each Step and display the
STL code first.

If program flow has stopped at a breakpoint in a function, the editor window
shows the values of global variables and the values of variables that are local to
the function. Variables local to the function are not displayed unless program
flow has paused.

Security ¹ Log On n/a Accesses Log On dialog box.
Change
Password

n/a Accesses Change Password dialog
box.

Configure
Users

n/a Accesses Configure Users dialog
box.

Log Off n/a Accesses Log Off dialog box.
Help Displays online help for the

standalone Watch window.
1 Security configuration is described in the "Setting Up Security" chapter.

Menu Bar
Option Command

Toolbar
Icon Description
Wonderware InControl Environment User’s Guide

166 Chapter 8
Checking the Wonderware Logger
The Wonderware Logger records information regarding the activity done on
the computer, i.e., startup data, error conditions, SuiteLink Server information,
etc. The Wonderware Logger is a Windows service and is configured to start
automatically when you power up the hardware unit.

If a problem occurs, for example, the runtime engine indicates an error
condition, be sure to check the Wonderware Logger before clearing the error.
Always check the Wonderware Logger for error messages before calling
Technical Support.

The runtime engine monitor icon shown below indicates an error condition and
that information has been written to the Wonderware Logger.

Note that information may be written to the Wonderware Logger even if no
error condition occurs, for example mode changes.

• To display the Wonderware Logger, right-click the runtime engine monitor
icon, and select View Logger, as shown below.

Accessing the Logger 2

For more information about the Wonderware Logger, see the Log Viewer
Online Help.

The Windows Event Viewer also monitors events in your hardware unit. For
more information about the Event Viewer, see your Windows documentation.

The Runtime Engine Logger contains information about the runtime engine
when the hardware platform does not run the Windows operating system. For
more information, see "Looking at Logger Data" in the "InControl System
Administration" chapter."
Wonderware InControl Environment User’s Guide

Running a Project 167
Using the Runtime Engine System Variables
The InControl system variables provide additional information about the
system, such as scan and program execution times, power failures, etc. See the
Runtime Engine System Variables table in the Defining Variables chapter for a
detailed description of these system variables.
Wonderware InControl Environment User’s Guide

168 Chapter 8
Wonderware InControl Environment User’s Guide

InControl System Administration 169
C H A P T E R 9

InControl System
Administration

This chapter describes the InControl system-level functions.

Contents
• Runtime Engine Timeline

• Accessing the Runtime Engine Properties

• Checking General Properties of the Runtime Engine

• Setting Scan Times

• Tuning the Scan

• Checking Runtime Status Data

• Checking the Remote Node

• Configuring Components

• Looking at Logger Data

• Clearing Runtime Engine Fault Mode

• Clearing Program Fault Mode

• Handling I/O and Other Hardware Errors

• Configuring Runtime Engine Service Startup

• Handling Power Failure

• Running Multiple Projects

• Changing System Registry Keys

• Issuing Runtime Engine Commands

• Value/Time/Quality Support

• Entering Event Viewer Settings
Wonderware InControl Environment User’s Guide

170 Chapter 9
Runtime Engine Timeline
The InControl runtime engine reads and writes to the I/O, executes application
programs, and does overhead tasks and SuiteLink/DDE communications. The
time required to do all these tasks, called the Total Scan Time, is adjustable on
the Runtime Engine Properties dialog box.

A diagram of a complete scan by the runtime engine (the timeline) is shown in
the following figure.

InControl Timeline

Immediate reads and writes take place for global and local variables that are
not I/O variables. You can use DCOM and SuiteLink interfaces to read and
write intermediate values for RLL and SFC logic. This is done asynchronously,
as shown in the figure. SuiteLink read/write operations from these interfaces
occur immediately, whenever they are requested by the external application,
e.g., InTouch. The frequency of a SuiteLink "Advise" is determined by the
SuiteLink Server scan time. The frequency of a DCOM "Advise" is determined
by the Data Monitor Update Interval. You specify both values in the Runtime
Engine Properties dialog box.

Controller cards, control bus architectures, and I/O modules all have different
timing requirements, which are often implementation specific. It is possible to
set a total scan time within InControl that is faster than these devices can
handle. For information about how to handle this situation, see "Setting Scan
Times."

Because runtime engine execution has a high priority within the Windows
operating system, it preempts other operations, such as mouse movement, for
example. Decreasing the scan time could cause the system to respond more
slowly to user inputs from the mouse or keyboard.

Details of the timeline are listed below. Program execution is described in the
pages that follow.
Wonderware InControl Environment User’s Guide

InControl System Administration 171
1. Update the I/O for the first board listed in the I/O View. An update is based
on the I/O driver’s implementation; some boards write and read I/O in this
time slice, while other boards only read inputs.

Update additional boards in the same order in which they are listed in the
I/O View.

2. Execute normal-priority programs in the order that they appear in the
Execution View. * For projects, you specify the execution order in the
Execution View, as described in "Project/Program Execution Order" in the
"Running a Project" chapter. If you change the order in the Execution
View, the new order does not take effect until the next project download.

Normal-priority programs run in a real-time relationship (synchronous)
with the I/O. The runtime engine always executes these programs. If the
Total Scan Time is set too low, the programs are run, but the
RTEngine.ScanOverrun system variable is set to TRUE.

3. Execute low-priority programs in the order that they are downloaded. * As
with normal-priority programs, you can specify the download order in the
Execution View. If a program is downloaded after a project is
downloaded, its execution order as defined in the Execution View is
preserved.

Low-priority programs are run only if time remains after all the other tasks
on the timeline have been executed. If all low-priority programs are not
executed in a single scan, execution begins after the last low-priority
program that ran during the previous scan.

Note that low-priority programs execute as Windows high-priority real-
time threads.

4. I/O boards that only read inputs in step 1 write outputs in this time slice.

5. Run overhead tasks. If the runtime engine begins to use more than the
allocation percentage specified in the Processor Utilization field
("Setting Scan Times"), it begins to skip scans. This design prevents the
runtime engine from consuming so much of the processor time that user
interaction is blocked. If the scan does not complete before the watchdog
timer, specified in the Watchdog Timeout field ("Setting Scan Times"), is
reset, the runtime engine service is stopped.

* When the runtime engine is in the Pause mode, normal- and low-priority
programs are not executed.

SFC Execution
The general execution order for the program elements of an SFC is as follows:

1. Evaluate all active Transitions. Actions and Steps are scheduled for
execution.

2. Execute scheduled tasks: Step code (Structured Text or Macros).

3. Execute Actions.
Wonderware InControl Environment User’s Guide

172 Chapter 9
The Structured Text code in a Step is executed one time to completion when
the Step is first activated. Exceptions to this can occur in lengthy operations,
such as loops (FOR, WHILE, REPEAT), and file access operations. For loops,
execution of the Structured Text is suspended until the next scan, unless the
loop is ended with one of the NOWAIT statements. The SCAN statement
forces execution to suspend until after the next I/O scan.

The SFC does not transition until the Structured Text code is complete. In
addition, after the code is complete, the Step does not run again until the Step is
exited and reentered.

When an Action terminates, it is executed one more time on the following
scan, with the rung input set to FALSE. This allows timers, counters, and
output coils to reset. If you want additional logic to be executed when the
Action is terminated, use the F_TRIG function block to negate the FALSE
power flow into the rung.

In the following example, the project contains two SFCs, S1 and S2, each with
one Step. If S1 has a SCAN statement halfway through its execution, the
following order obtains:

SFC Execution

Structured Text Program Execution
The execution of a Structured Text program consists of one complete scan of
all statements in the program. Note that exceptions can occur in lengthy
operations, such as loops (FOR, WHILE, REPEAT), and file access operations.
For loops, execution of the Structured Text is suspended until the next scan,
unless the loop is ended with one of the NOWAIT statements. The SCAN
statement forces execution to suspend until after the next I/O scan.

RLL Execution
The execution of a Relay Ladder Logic program consists of one complete scan
of the program.

FOE Execution
The execution of an FOE consists of calling its control method once per scan.
For ActiveX controls that are not InControl specific, an SFC or Structured Text
instruction must call the ActiveX control whenever the control is to be run.

Some FOEs, such as the PID FOE, are designed to be executed automatically.
They have a method that is called once every scan by the runtime engine.
When loaded to the runtime engine, the mode for these FOEs can be Run,
Pause, Stop, etc.
Wonderware InControl Environment User’s Guide

InControl System Administration 173
Some FOEs do not have a method designed to run automatically every scan.
For these FOEs, you need to include code in an SFC or Structured Text
program to call a method for the FOE to execute correctly. When loaded to the
runtime engine, the mode for these FOEs is indicated as being Loaded.

Program Execution and Stepping a Program
The Step Program option allows you to execute a line of logic in a single
program. A program must be in the Pause mode before you can step it.

Each time you click Step Program on the Runtime toolbar, programs are
executed as follows:

• For an RLL program, one rung of logic is executed.

• For a Structured Text program, one line of code is executed.

• For an SFC program, one line of code of an active Step is executed. If
more than one Step is active, each Step is stepped through in turn. All
active Actions are executed completely.

• For an FOE, the Step Program option is not supported.

Note Single-stepping any program may cause execution order to differ from
that of a normally running program. This is due to the continuous execution of
I/O, other programs, and in the case of SFCs, Actions.

Project/Program Execution and Single Scanning
The Single Scan option allows you to execute all programs in a project for one
complete scan, following the timeline that is described in "Runtime Engine
Timeline." Order of program execution is based on the order of the programs in
the Execution View. A project/program must be in the Pause mode before you
can execute a single scan.

Note Single-scanning may cause program execution order to differ from that
of normally running programs. This is due to the continuous execution of I/O,
other programs, and in the case of SFCs, Actions.
Wonderware InControl Environment User’s Guide

174 Chapter 9
Accessing the Runtime Engine Properties
To configure the runtime engine, click Configure on the Runtime menu. A
different dialog box appears, depending on whether the development
environment is connected to the runtime engine. If the development
environment is not connected, the Offline Runtime Engine Properties dialog
box appears. If the development environment is connected, the Online
Runtime Engine Properties dialog box appears. Additional tabs appear in the
Online Runtime Engine Properties dialog box, as shown below.

Accessing Runtime Engine Properties

The property sheets for the runtime engine are described in the following
pages.
Wonderware InControl Environment User’s Guide

InControl System Administration 175
Checking General Properties of the Runtime
Engine

The General tab of the Runtime Engine Properties dialog box is shown in the
following figure.

Runtime Engine Properties-General Tab

Configuration may vary for different target hardware platforms. For more
information about configuring the runtime engine on another platform, see the
appropriate user’s guide for that hardware platform.

Runtime Engine Properties-General Tab

Field Description
Node Connected to runtime engine

Read-only field displays node to which the Development
environment is connected.
Not connected to runtime engine
Enter the name of the node where you want to run the
project. For the local node, leave the field blank.

Version Connected to runtime engine
Read-only field displays version of the runtime engine.
Not connected to runtime engine
Field is blank.

Current Project Connected to runtime engine
Read-only field displays project downloaded to runtime
engine.
Not connected to runtime engine Field is blank.

Time Stamp Read-only field displays last time any changes were made
to the project downloaded to the runtime engine. Field is
blank when not connected to the runtime engine, or if no
project is downloaded to the runtime engine.
Wonderware InControl Environment User’s Guide

176 Chapter 9
Current Mode ¹ Connected to runtime engine
Read-only field displays the current status of the runtime
engine: Run, Pause, Stop.
These modes also occur, but are unlikely to be seen:
Fault—The runtime engine enters the Fault mode. Note that

this is different from a program fault.
Single Scan—A single scan is being run.
Program—A validation and download is taking place.
Not connected to runtime engine Field is blank.

Restart Mode ² Connected to runtime engine
Enter mode that the runtime engine automatically enters
after the hardware unit is booted.
Last—Reload last project to the runtime engine and set it to

mode that it was in before hardware unit was
booted. If you do a manual shutdown, compared to a
shutdown due to power failure, InControl sets the
runtime engine to Stop. Therefore, when you reboot,
the runtime engine enters the Stop mode.

None—The runtime engine service starts, but no programs
are loaded in runtime engine.

Pause— Reload last project to the runtime engine and set it
to the Pause mode.

Run— Reload last project to the runtime engine and set it to
the Run mode.

Not connected to runtime engine
Read-only field displays default values.

Wait For Connected to runtime engine
Enter zero for the project to resume running as soon as
possible after the runtime engine service restarts.
Enter a delay in seconds before a project automatically
resumes running after the runtime engine service restarts.
This allows you time to cancel if necessary.
Not connected to runtime engine
Read-only field displays default values.

1 Mode is also indicated by the RTEngine.Mode system variable,
described in "Using the Runtime Engine System Variables" of the
"Running a Project" chapter.

2 For more about automatic startup, see "Restarting Projects
Automatically."

Field Description
Wonderware InControl Environment User’s Guide

InControl System Administration 177
Setting Scan Times
Use the Offline or Online tabs of the Runtime Engine Properties dialog box
to designate the processor utilization and to set timing intervals, such as scan
times, and update time for the Watch Window.

• Offline tab — Changes that you make on the Offline tab take effect the
next time you download a project or individual program. The Offline tab
appears when you click Configure on the Runtime menu or double-click
the RTEngine icon in the Project View.

• Online tab — Changes that you make on the Online tab take effect as soon
as you apply them. However, the next time you load a project or program
and include the project configuration (select Full Restart on the Run
Project dialog box, for example) the settings of the Offline tab overwrite
the settings of the Online tab.

The Online tab appears when you place the cursor over the runtime engine
monitor icon in the task bar, right-click, and click Configure. If the
development environment is connected to the runtime engine, click
Configure on the Runtime menu or double-click the RTEngine icon in
the Project View.

WARNING! Setting the Scan Time too low may cause the runtime engine to
skip scans. This could result in unpredictable operation by the I/O devices and
cause injury or death and/or damage to equipment. Be sure to select an
appropriate scan time for your application. See "Setting Scan Times" for more
information.

Note Configuration may vary for different target hardware platforms. For
more information about configuring the runtime engine on another platform,
see the appropriate user’s guide for that hardware platform.

The fields on the Offline and Online tabs of the Runtime Engine Properties
dialog box are shown in the following figure.

Runtime Engine Properties-Offline/Online Tab
Wonderware InControl Environment User’s Guide

178 Chapter 9
Field Description
Scan Time /
Processor Utilization

Enter values in the Scan Time and Processor Utilization
fields that act together to determine how much processor
time the runtime engine has to execute logic and process
I/O.
Scan time determines how often the runtime engine
executes logic. Processor utilization determines the
maximum percent of the scan time that can be used by the
runtime engine in the execution of program logic and
processing I/O.

Changes that you make on the Offline tab take effect the
next time you download a project or individual program.

For more information about setting the scan, see "Setting
Scan Times."

Watchdog Timeout Specify the time interval (greater than the scan time)
during which the runtime engine must reset the
watchdog timer. The runtime engine service is
stopped if the watchdog timer is not reset during this
interval. It is recommended that you reboot the system
to restart the runtime engine service.
If the watchdog timer expired because a program
entered an endless loop, cancel the automatic restart if
the runtime engine is configured to run the project
again.

Changes that you make on the Offline tab take effect
the next time you download a project or individual
program.

Retentive Update Specify the time interval at which retentive and forced
values are copied to the hard disk. Fractional minutes
are allowed. Enter 0 to disable.
Take into account the number of retentive variables in
your project when you choose the frequency of the
update. A short update interval can degrade the
performance of your system when a large number of
the variables are retentive.

Changes that you make on the Offline tab take effect
the next time you download a project or individual
program.

Update Interval Specify the frequency for updating the Watch
Window and runtime animation for those programs
that support animation.

Changes that you make on the Offline tab take effect
the next time you download a project or individual
program.
Wonderware InControl Environment User’s Guide

InControl System Administration 179
Tuning the Scan
It is important to tune the runtime engine to balance its CPU requirements
with those of other applications, including the operating system. This will
help avoid consuming all the resources of the CPU, which could lock up the
system.

Targeting CPU Utilization
InControl provides two properties on the Runtime Engine Properties dialog
box. You use these properties to determine the amount of processor time that
the runtime engine has to execute logic and to process I/O.

• The Scan Time property determines how often the runtime engine
executes logic.

• The Processor Utilization property determines the maximum percent of
the scan time that can be used by the runtime engine in the execution of
program logic and processing I/O.

You must specify appropriate values for these two parameters to balance the
needs of the runtime engine with the needs of any other applications that are
running.

On each scan, the runtime engine makes the following computation to
determine a CPU percentage:

Note The CPU percentage is the same for a single processor- or a multiple-
processor machine. CPU percentage is based on time taken to execute, not on
actual amount of CPU Utilization.

When the runtime engine does these computations, it checks to see if the CPU
percentage exceeds the value that you have specified. If your value is
exceeded, then the runtime engine will skip scans to bring the observed CPU
percentage back to your value.

For example, if you specify 20% CPU Utilization and a 100 ms scan rate, then
20 ms will be allocated on each scan for normal-priority program execution
and I/O scan. If the programs and I/O consistently take 30 ms, then the runtime
engine will start skipping every eighth scan to bring the CPU percentage back
to 20%. If the normal-priority programs and I/O consistently take 80 ms, then
the runtime engine will run one scan and then skip three scans to bring the
CPU percentage back to 20%. In both of these cases, if you specify 80% for the
CPU Utilization, no scans are skipped.

Consider the runtime engine to have a target percentage of CPU use, and it will
do the necessary calculations and skip the necessary scans to reach that target.

WARNING! Skipping scans could result in unpredictable operation by the I/O
devices and cause injury or death to personnel and/or damage to equipment.
To help avoid skipping scans, be sure to select a scan time and CPU utilization
that is appropriate for your application.

CPU% Execution Time Nomal Priority Program() I/O Time+
Scan Time

---=
Wonderware InControl Environment User’s Guide

180 Chapter 9
Normally, some fluctuation occurs in both program execution time and I/O
execution time from scan to scan. Therefore, it is recommended that you leave
some additional room in the CPU percentage computation to accommodate
these normal fluctuations.

Using the scan time and CPU percentage to throttle the runtime engine has the
following goals:

• Permit other applications (with some limitations) to run on the same
hardware unit as the runtime engine.

• Prevent the system from locking up in case of unintended overuse of the
CPU by the program logic or I/O scan.

The mechanism for this throttling is designed to help in situations where
programs and I/O are not operating normally. Skipping scans should not occur
during normal operation.

Low-priority programs are treated in a different fashion. If the runtime engine
has not used up its allotted time slice, then a low-priority program will be run.
This low-priority program can run beyond the CPU percentage boundary, and
it will not be counted as part of the runtime engine CPU percentage. If the first
low-priority program finishes executing and some time remains in the runtime
engine time slice during that scan, then another low-priority program will be
started.

Note On a single-processor system, it is recommended that you avoid setting
CPU Utilization to 100%. This is to allow time for the Windows operating
system tasks to execute. In general, depending on your system and the
applications that you are running, do not set CPU Utilization greater than 90%.
For a multiple-processor system, a CPU Utilization of 100% is recommended.

The figures on the next several pages illustrate various scenarios of program
execution and show examples of normal operation and operation with skipped
scans.
Wonderware InControl Environment User’s Guide

InControl System Administration 181
Examples of Normal / Skipped Scans
In the figure below, the ratio of actual CPU% to specified CPU Utilization is
defined by the following relationship:

0 < ratio < 1

• Operation is normal.

• No scans are skipped.

• There are no watchdog errors.

• There are no low-priority programs.

InControl Scans Example 1

In the figure below, the ratio of actual CPU% to specified CPU Utilization is
defined by the following relationship:

0 < ratio < 1

• Operation is normal.

• No scans are skipped.

• There are no watchdog errors.

• Low-priority programs are scheduled to run.

InControl Scans Example 2
Wonderware InControl Environment User’s Guide

182 Chapter 9
In the figure below, the ratio of actual CPU% to specified CPU Utilization is
defined by the following relationship:

0 < ratio < 1

• Operation is normal.

• No scans are skipped.

• There are no watchdog errors.

• Low-priority programs are scheduled to run and they extend the scan.

InControl Scans Example 3

In the figure below, the ratio of actual CPU% to specified CPU Utilization is
defined by the following relationship:

1 < ratio < 2

• Operation is not normal.

• Scans are skipped.

• There are no watchdog errors.

• Low-priority programs, if any, will never run.

InControl Scans Example 4

In the figure below, the ratio of actual CPU% to specified CPU Utilization is
defined by the following relationship:

ratio => 2
Wonderware InControl Environment User’s Guide

InControl System Administration 183
• Operation is not normal.

• Scans are skipped more aggressively.

• There are no watchdog errors.

• Low-priority programs, if any, will never run.

InControl Scans Example 5

Scan Operation and the Watchdog Timer
A watchdog error occurs when a single scan of program logic and I/O exceed
the specified watchdog interval. The runtime engine makes this check at every
scan interval. If the watchdog timer ever expires, then the runtime engine
attempts to set the I/O to a safe state and then shuts down. The default
watchdog interval is 10 seconds.

I/O Considerations
Controller cards, control bus architectures, and I/O modules all have different
timing requirements, which are often implementation specific. It is possible to
set a total scan time within InControl that is faster than these devices can
handle. This is particularly true when the scan time is less than 10 ms. For
example, you can set InControl to update a 300 Hz I/O module at 1000 Hz, but
only 300 of these updates actually register with the I/O module.

For scan times under 10 ms, it is recommended that you do initial
configuration and testing at a scan time over 10 ms. Then test for successful
performance at progressively faster scan times, until the required scan time is
achieved.

Check the actual scan times in the Status tab of the Runtime Engine
Properties dialog box. Reduce the total scan time and CPU percentage until
the average value is as low as necessary. Scan time is set relative to the amount
of CPU time you use in your process. The relationship for determining the
appropriate scan time is given in "Targeting CPU Utilization."

At very fast scan times (less than 10 ms) the runtime engine takes priority over
the system call to the system performance timer. Consequently, the
RTEngine.ScanLast and RTEngine.ScanMax system variables are not accurate
reflections of actual I/O scan times at very fast scan rates. In addition, bus and
I/O latencies for I/O modules can be in the range of 1-10 ms.
Wonderware InControl Environment User’s Guide

184 Chapter 9
When your application requires scans of this speed, always connect an
oscilloscope to the I/O to obtain accurate measurements of performance,
instead of relying on the system variables for this data. InControl counters
reflect only internal time.

WARNING! Changing scan time while programs are running may cause
unpredictable operation by I/O devices, resulting in death or injury to
personnel and /or damage to equipment. It is recommended that you set the
runtime engine to Stop mode before changing the scan time. Then restart the
programs.
Wonderware InControl Environment User’s Guide

InControl System Administration 185
Checking Runtime Status Data
The Status tab of the Runtime Engine Properties dialog box is shown in the
following figure. Use this property sheet to check or reset scan times, status
bits, and usage of memory allocated for InControl.

Status of Runtime Engine Tab

Field Description
Scan Overrun Indicates when a scan overrun occurs.
Divide by Zero Indicates when a division by zero occurs.
Power Failure Indicates a power failure has occurred. In order to

implement an uninterruptible power capability for your
InControl system, you need to install an intelligent UPS.
For more information, see "Handling Power Failure."

First Scan Indicates that the current scan is the first scan. Useful for
detecting the first scan within program logic.

First Scan on
AutoStart

Indicates that the current scan is the first scan after an
automatic restart.

Total Amount of time to do a complete scan, including I/O scan,
program execution, and idle time. If the time for a complete
scan (value in the Total/Last field) is greater than the
configured scan (value entered in Online tab), scans are
skipped.

Execution Amount of time to execute all programs currently running
in the runtime engine.
Wonderware InControl Environment User’s Guide

186 Chapter 9
I/O Amount of time to scan the I/O.
% CPU Percent of processor time used by InControl. Used to

monitor CPU percentage.
Update Updates the values in the fields.
Reset Sets all values displayed in the dialog box to an initial

value. Scan statistics are set to zero. Status bits are set to
FALSE.

Field Description
Wonderware InControl Environment User’s Guide

InControl System Administration 187
Checking the Remote Node
The Remote tab appears in the Online Runtime Engine Properties dialog
box when the target runtime engine is on a remote node.

Using the Remote Tab
The Remote tab of the Runtime Engine Properties dialog box is shown in the
following figure.

Remote Node Tab

Field Description
Time Field Displays current time on the remote node. If the

platform does not support daylight savings time,
the value in this field is automatically corrected.

Synchronize Time
Button

Click to set the time on the remote node to match
the current time, daylight savings option, and time
zone of the local node.

Memory Available Displays the amount of physical memory (RAM)
available on the remote node.
Field is updated only when you open the dialog
box.

Storage Available Displays the amount of hard disk space available
on the hard disk of the remote node where the
runtime engine is installed. Field is updated only
when you open the dialog box.
Wonderware InControl Environment User’s Guide

188 Chapter 9
Downloading Files
In the event that you need to download files to the remote node from the local
node, you can use the Remote tab to check file versions and to select the files
to be downloaded. For example, you may have a custom-designed factory
object that you want to use on the remote node; or you may want to update an
I/O driver on the remote node.

Before you can download any files, place copies of the files into a subdirectory
of the InControl directory of the local node. This subdirectory must have the
same name as the target name of the remote node. For example, if the path for
InControl on the local system is the following:
C:\Program Files\FactorySuite\Common\InControl

and the target is a Windows NT platform, place the files in the following
directory:
C:\Program Files\FactorySuite\Common\InControl\NT

If the target system is a Contec platform, for example, place the files in the
following directory:
C:\Program Files\FactorySuite\Common\InControl\Contec

After you copy a file into the appropriate directory, the file name appears in the
File field of the Remote tab. Select the files that you want to download and
click Apply. Executable files, with the extensions .OCX, .DLL, and .EXE, are
automatically registered on the remote node when they are downloaded.

A file cannot be transferred if it is in use. For program files that are running in
the runtime engine on the remote node, you must stop the program before you
can transfer it. Depending on the program and such factors as the length of its
time-out period, you may have to wait several minutes for the program to be
unloaded.

Note An error message may appear, depending on the file being downloaded,
the target operating system and the way this operating system normally handles
file registration. It is likely that the download and registration occurred
correctly; however, be sure to check the appropriate user documentation for the
target operating system for more information.

File Column Lists files on the local node available for
downloading to the remote node.

Local Version Column /
Remote Version Column

Displays time stamp and version (where
appropriate) for files that are available for
downloading to the remote node, or that have
already been downloaded.
If Remote Version is blank, the file does not exist
on the remote node.

Field Description
Wonderware InControl Environment User’s Guide

InControl System Administration 189
Synchronizing Time
Use the Remote tab to synchronize time on the remote node with that of the
local node. Click Synchronize Time on the Remote tab to set the time on the
remote node to match the current time, daylight savings option, and time zone
of the local node.

Note Some platforms do not support daylight savings time.
Wonderware InControl Environment User’s Guide

190 Chapter 9
Configuring Components
The Components tab displays any new features (components) that you have
installed your system to enhance the capabilities of the runtime engine. For
example, if you install a third-party HMI, it is listed on the Components tab.

Using the Components Tab
The Components tab of the Runtime Engine Properties dialog box is shown
in the following figure.

Components Tab

Button / Field Description
Name Column Displays the name of the component. Select the checkbox

to load the component; clear the checkbox to unload the
component.

Status Column Displays the current status of the component.
Start = The component is loaded and running.
Stop = The component is loaded but not running.
Pause = The component is loaded but has temporarily
stopped running.
Disabled = The component is disabled.
Not installed = The component is not installed.

Offline
Configure

Click to set runtime parameters. Offline changes take effect
after you download the project to the runtime engine.

Online
Configure

Click to set runtime parameters. Online changes take effect
as soon as you apply them.

Status Click to change the status of the component.
Wonderware InControl Environment User’s Guide

InControl System Administration 191
SuiteLink Component Configuration
The SuiteLink Server is an example of a component that you may have
installed and intend to run on your system. If you click Offline Configure or
Online Configure on the Component tab, you can set the scan time and data
timeout as shown in the following figure.

SuiteLink Configuration

SuiteLink Component Status
Click Status on the Component tab to change the component status as shown
in the following figure.

SuiteLink Component Status

Field Description
Scan Time Specify the time interval at which the runtime engine

updates SuiteLink processes, such as InTouch or InSQL.
Data Timeout Specify the time interval during which the SuiteLink server

must respond to communications from the runtime engine
before a timeout occurs.

Button Description
Start Select to load and run the component.
Stop Select to stop execution of the component.
Pause Select to pause execution of the loaded component.
Wonderware InControl Environment User’s Guide

192 Chapter 9
Looking at Logger Data
The Logger tab of the Runtime Engine Properties dialog box is shown in the
following figure. This tab appears in the Online Runtime Engine Properties
dialog box when the target runtime engine is on a hardware platform that is not
using the Windows NT / 2000 operating system. When the hardwareplatform
does not support the Wonderware Logger, all information that the runtime
engine normally sends to the Wonderware Logger appears in the Runtime
Engine Logger instead.

Logger Tab

Field / Button Description
Maximum Lines Enter the number of messages to display. When this

number is reached, the oldest line is deleted to make room
for a new message.
To disable the Runtime Engine Logger, enter zero.

Update Click to update the Logger with the latest values from the
runtime engine.

Clear Logger Click to clear all messages from the Logger.
Note that this deletes messages permanently.
Wonderware InControl Environment User’s Guide

InControl System Administration 193
Clearing Runtime Engine Fault Mode
The runtime engine monitor checks the status of the runtime engine every 10
seconds. If the monitor is unable to obtain the status of the engine, the fault
symbol is superimposed over the runtime engine monitor icon. In the event that
the runtime engine enters the Fault mode, the system variable RTEngine.Mode
is set to a value of six, and the following fault symbol is superimposed over the
runtime

To clear the runtime engine Fault mode:

1. Check the Wonderware Logger or the Output window for error messages.

2. Click the runtime engine monitor icon and select Exit Monitor.

3. Restart the runtime engine service.

4. Redownload the project.

If a warning or error message is sent to the Wonderware Logger, the system
variable RTEngine.Error is set to TRUE.

The RLL ABTAL function block and the Structured Text ABORT_ALL
procedure can also set the runtime engine to the Fault mode. To clear the Fault
mode in this case, you can skip steps 2 and 3 in the procedure above. Instead of
step 4, set the runtime engine to the Pause or Run mode.
Wonderware InControl Environment User’s Guide

194 Chapter 9
Clearing Program Fault Mode
During the course of its execution, a program may do an illegal operation and
enter the Fault mode. The InControl validation process helps you avoid some
programming mistakes, such as syntax errors, that result in illegal operations.
However, some problems may still occur and cause a program to enter the
Fault mode. For example, an array index may be assigned a value that is out of
bounds. A third-party FOE may develop an internal error. A value of six may
be written to a program's Mode system variable (from the Watch window, by
program logic, etc.) and cause the program to enter the Fault mode.

 If a program enters the Fault mode, "Fault" appears in the program's title bar
and in the Project View. InControl sets the Mode system variable for the
program to six, writes a message to the Output window and the Wonderware
Logger, and

When a Program is in the Fault mode, its logic is no longer executing. A
Faulted program does not directly affect the execution of other programs or
POUs of the project

To restart a program in the Fault mode:

1. Clear faults. On the Runtime Engine Monitor menu, click Clear Faults.
This sets the program to the Pause mode. If other programs are running,
they continue to run and the runtime engine remains in the Run mode.

You can also set the program to the Run or Pause mode to clear faults.

2. Set the program to the Run mode.

3. If the program returns to the Fault mode, you need to check program logic
and possibly the integrity of your hardware. If you change the program,
download it again and run it.

For information about using one of the runtime engine functions to clear faults,
see "Checking the Program Mode" in the "System Administration" chapter.
Wonderware InControl Environment User’s Guide

InControl System Administration 195
Handling I/O and Other Hardware Errors
For I/O and other hardware errors, correct the fault condition and then click
Clear Faults on the Runtime menu.

Note Information may be written to the Wonderware Logger even if no error
condition occurs, for example when mode changes occur.

Configuring Runtime Engine Service Startup
The runtime engine is a Windows service and is configured to start
automatically when you power up the hardware unit. Typically, it is not
necessary to stop the runtime engine service. If no projects are running, the
runtime engine is idle and consumes very little processor time. However, it
may become necessary to stop the runtime engine service to install software,
troubleshoot system problems, power cycle the system without automatically
restarting the runtime engine etc. You can configure your system so that the
runtime engine does not start automatically after you reboot the Windows
operating system.

WARNING! Some system services are critical to the operation of the
Windows operating system. If you stop an operating system service, the system
may lock up and become difficult to reboot. This can result in unpredictable
operation by I/O devices, which can cause death or injury to personnel and/or
damage to equipment. Be sure to allow only qualified personnel to start and
stop processes in the Services dialog box.
Wonderware InControl Environment User’s Guide

196 Chapter 9
Handling Power Failure
You can configure InControl to shut down and then restart automatically in an
orderly manner. This allows you to design an unattended resumption of control
of your factory process in the event of a power failure.

Using an Uninterruptible Power Supply
InControl provides two utilities (ICPwFail and ICPwOn) and a system variable
(RTEngine.PowerFail) for reporting the loss and restoration of power to the
system. These features are designed to interact with any third-party
uninterruptible power supply (UPS) that is capable of reporting a loss of
power.

• The utility ICPwFail sets RTEngine.PowerFail to TRUE when ICPwFail
receives notification from the UPS that power has been lost.

• The utility ICPwOn sets RTEngine.PowerFail to FALSE when ICPwOn
receives notification from the UPS that power has resumed.

It is important to note that it is not sufficient simply to connect the InControl
system to a UPS to monitor power status within your application. The UPS
must have a programming capability that can be used to instruct it to respond
to changes in power status in the following ways.

• When the UPS software determines that power has failed, it executes the
ICPwFail utility. The utility communicates with InControl, permitting any
actions that you have programmed to occur.

• When the UPS software determines that power has been restored, it
executes the ICPwOn utility. The utility communicates this change of state
to InControl, permitting any actions that you have programmed to occur.

The UPS service that is part of the Windows operating system provides only
the first capability, running a command file in response to a power failure.
Moreover, it only executes the command file several seconds before the system
is shut down. In most instances, this does not provide enough time to be useful,
except for the simplest industrial automation purposes. A number of third-
party products are available that provide the capability to run both command
files.

Using System and User-Defined Variables
Use the RTEngine.PowerFail system variable to coordinate shutdown and
startup. The Mode variable automatically created for each program and for
each I/O board may also be useful in planning an orderly shutdown. Use the
RTEngine.FirstScan and/or the RTEngine.FirstScanOnAutoStart system
variables to automate process control restoration by causing program flow to
branch to an initialization procedure. Configure the runtime engine to resume
execution in the appropriate mode: last mode, paused, stopped, etc., as
described in "Checking General Properties of the Runtime Engine."

You can write or force the RTEngine.PowerFail variable from the Watch
window, and any programs that use the variable will reflect the new value in
their execution. Note that you must reset this variable manually, from the
Watch window.
Wonderware InControl Environment User’s Guide

InControl System Administration 197
You can define variables (data type = RTECommand) and use the initial values
of PowerFailOn and PowerFailOff to simulate power failures for test purposes.

Retentive/Forced Variables and Power Failure
If you check the Retentive Value checkbox on a variable's Symbol Properties
dialog box, you have the option of backing up the value of a variable to the
hard disk.

InControl provides three ways by which you can specify for the backup to
occur.

• If the runtime engine shuts down during a power failure, the values of
retentive and forced variables are copied to the hard disk. When the
runtime engine restarts, these values are restored to the variables.

The values of retentive and forced variables are not saved unless you are
using an intelligent UPS with the system and you have configured it to
signal InControl of the power failure.

• You can configure InControl to save retentive and forced variables to the
hard disk periodically. The default frequency of zero disables this feature.
You can change it in the Runtime Engine Properties dialog box,
described in "Setting Scan Times."

• You can design code in a program to save the value of retentive and forced
variables on demand. For a forced variable, both the value and the forced
state are saved to the hard disk. Use the following syntax:
RTEngine.ExecProjectCommand (SaveRetentive);

The values are only restored when the runtime engine is configured to
restart automatically (Last, Pause, Run mode) after a system reboot. For
more information, see "Restarting Projects Automatically."

Restarting Projects Automatically
In the event that the InControl hardware unit loses power, the runtime engine
service starts automatically when power is resumed. The runtime engine
returns to the mode specified in the General tab of the Runtime Engine
Properties dialog box. This dialog box is shown below and described in
"Checking General Properties of the Runtime Engine."
Wonderware InControl Environment User’s Guide

198 Chapter 9
Restart Mode Field

Setting the Restart Mode
Choose from the following restart options, which are selected in the Restart
Mode field:

• Last—Reload the last project. The runtime engine enters the mode that it
was in before the hardware unit was booted.

Note that when you do a manual shutdown (compared to a shutdown
occurring due to power failure) InControl automatically sets the runtime
engine to Stop. Therefore, when you reboot, the runtime engine enters the
Stop mode. If you want the runtime engine to reload and run the last
project, choose the Run option.

• None—The runtime engine service starts, but no programs are loaded in
the runtime engine.

• Pause—Reload the last project. The runtime engine enters the Pause
mode.

• Run—Reload the last project. The runtime engine continues running the
project that was running before the hardware unit was booted.
Wonderware InControl Environment User’s Guide

InControl System Administration 199
If the runtime engine begins to enter the Run mode after the hardware unit
reboots, you have the option of canceling the automatic start of a project.
When the runtime engine service restarts, the Auto Start Project dialog box
appears.

Auto Start Project Dialog Box

If you do not want the project to resume running, click Cancel to set the engine
to the Stop mode.

Note The value in the Restart Mode field determines the mode of the
runtime engine after a the system restarts. Individual programs that were in a
mode different from the runtime engine before the system restarts will be in the
same mode as the runtime engine after a reboot. If you want a program to enter
a different mode from that of the runtime engine, use the FirstScanOnAutoStart
system variable with appropriate code to set the mode of the program.

Backing Up Retentive/Forced Variables
If the runtime engine shuts down during a power failure, the values of retentive
and forced variables are copied to the hard disk.

The values of retentive and forced variables are not saved unless you are using
an intelligent UPS with the system and you have configured it to signal
InControl of the power failure.

For more information about preparing for power failures, see "Handling Power
Failure."
Wonderware InControl Environment User’s Guide

200 Chapter 9
Running Multiple Projects
InControl supports distributed control, which enables you to download and run
a project on a runtime engine located on another computer. These guidelines
apply:

• A project can be opened for editing by one Development environment at a
time. This prevents corruption of the project files. One instance of the
InControl Development environment can open only one project at a time.

• The Development environment on a node can download a project to the
runtime engine located on the connected node.

• The Development environment on any node can connect to a project
running on another node, monitor the variables from the Watch window,
stop and start the project.

• A node supports one instance of the runtime engine.

Note During installation, you can choose to install only the runtime engine on
a node.

Some examples of distributed control are illustrated in the following figures.
Other scenarios are possible.

• On Node A, you can open a project and download it to remote Node B.
Then, after switching to a second project (click Project on the File menu
and select the project), you can download this project to remote Node C.
You can then open another project and download it to D.

Multiple Project Example 1
Wonderware InControl Environment User’s Guide

InControl System Administration 201
• On Node W, you can run an instance of InControl, open a project, and
download it to remote Node X. Then you can run a second instance of
InControl. Click Start on the Taskbar, and point to Programs. Under
Wonderware FactorySuite, select InControl. Open a second project and
download this project to remote Node Y. Follow the same procedure for
node Z.

Multiple Project Example 2

It is recommended that you plan carefully how you store the source files for a
project. If you download a project from node A to a runtime engine on node B,
only a binary file is loaded to node B. If you then delete the project on node A,
the source code is gone and the project cannot be edited.

Consider having all projects stored or archived on a central server and
checking out a copy when you need to make changes. As an alternative, you
could make a backup copy of a project on the same node to which you
download the project.

Configuring a Connection to a Remote Node
Designate the remote node on the General tab of the Runtime Engine
Properties dialog box.

To designate a remote node:

1. Disconnect the development environment from the runtime engine.

2. On the Runtime menu, click Configure.
Wonderware InControl Environment User’s Guide

202 Chapter 9
3. Select the General tab to display the offline properties.

General Tab - Node Field

4. Enter the name of the remote node in the Node field and click OK.

Note Leave the field blank to indicate the local computer.

The next time you click Connect on the Runtime menu, the development
environment connects to the runtime engine located on the remote node.

Remote Node Project

You can enter the machine name or the TCP/IP address of the computer in the
Node field of the Runtime Engine Properties dialog box. If you use the
TCP/IP address and have difficulty connecting to the remote node, enable the
Microsoft Network TCP/IP LMHosts lookup.

To enable LMHosts lookup (Windows NT operating system):

1. Click Start on the Taskbar, then point to Settings and click Control
Panel.

2. Click Network and select the Protocols tab.
Wonderware InControl Environment User’s Guide

InControl System Administration 203
3. Select TCP/IP and click Properties.

4. On the WINS Address tab, check the Enable LMHosts Lookup
checkbox.

5. Reboot the computer for the new setting to become effective.

To enable LMHosts lookup (Windows 2000 operating system):

1. Click Start on the Taskbar, then point to Settings and click Control
Panel.

2. Right-click your LAN and select Properties.

3. Select Internet Protocol (TCP/IP) and click Properties

4. Click Advanced.

5. On the WINS tab, check the Enable LMHosts Lookup checkbox.

6. Reboot the computer for the new setting to become effective.

Transferring/Archiving Project Data
When nodes are linked by network connections, downloading a project to a
remote node is accomplished by the InControl Development environment. The
process is automatic and requires only that you specify a remote node in the
Runtime Engine Properties dialog box.

The InControl validation utility creates a file called RTEngine.dat that contains
all the compiled data of a project. You can use the file for the following
purposes:

• Make a copy of RTEngine.dat and store it for archival purposes.

• Copy RTEngine.dat to another node where you can load and run it. This
enables you to distribute pre-built projects that do not include the source
code. When nodes are not linked, you can transfer RTEngine.dat to a
remote node using a manual process.

Note the following considerations.

• It is not necessary to connect to the runtime engine before creating
RTEngine.dat.

• When you create RTEngine.dat, it is stored on the local node in the same
directory as the project.

• Before you can load the file to the runtime engine (on either the local node
or a remote node), you must move it to the working directory of the
runtime engine. For Windows NT / 2000 platforms, this is the NT
subdirectory, which is immediately below the directory where the
RTEngine.exe file is located.

To make a file archive:

1. Validate the project. In the Validate Project dialog box, check the Create
Executable Archiveof Project checkbox. This creates the file archive
called RTEngine.dat.

2. Locate the file, which is stored in the same sub-directory as the project.
Wonderware InControl Environment User’s Guide

204 Chapter 9
To load the file in the runtime engine:

1. Verify that the node is the appropriate target platform.

2. Set the runtime engine to the Stop mode.

3. Move the file to the working directory, defined above.

4. Right-click the Runtime Engine Monitor icon and click Reload Project.

For example, if the project called BldgCtrl has the following path:

C:\Program Files\FactorySuite\InControl\Projects\BldgCtrl

you can locate RTEngine.dat in the BldgCtrl sub-directory after you validate
the project.

For a Windows NT / 2000 target platform, you must place RTEngine.dat in the
following directory before you can load it:
..\InControl\NT

Using the Watch Window on the Remote Node
You can open and edit a project on a node when the runtime engine on the node
is running a different project. If you open the Watch Window on the node, the
symbols that you can add to the Watch Window by clicking Add Symbol are
those defined for the project being edited, not the symbols in the project that is
running. However, if you know the names of the symbols used in the project
that is running, you can type them into the Watch Window and monitor their
status as the program runs.

Note As an alternative to typing in each symbol name within the Watch
window, you can create an ASCII file with any text editor and enter the names
of the symbols that you want to monitor. See "Monitoring Program Variables"
in the "Running a Project" chapter for details about creating the file.

Configuring I/O on the Remote Node
Some of the currently supported I/O drivers allow you to open and edit the I/O
configuration of a project that will run on a remote node. The driver must be
installed on both the remote node and the local node where you do the
configuration. In addition, for some drivers, you may need to install the
scanner board in the local node as well as in the remote node.

Note Several I/O drivers provide utilities that you can use to do an automatic
configuration and/or run online diagnostics. Some of these drivers require you
to use these utilities on the remote node itself. Newer drivers support remote
automatic configuration and online diagnostics. To accomplish this, these
drivers may download themselves to the remote runtime engine. In this case,
the driver enters the Loaded mode (Mode system variable = 8).
Wonderware InControl Environment User’s Guide

InControl System Administration 205
Changing System Registry Keys
This section describes changes that you may decide to make in the system
registry.

WARNING! Making incorrect changes in the Windows registry can result in
unpredictable operation by InControl and I/O devices. This has the potential
risk of injury or death to personnel and/or damage to equipment. Always verify
that the changes you make in registry keys will not adversely affect the
operation of the computer or the applications you intend to run before
attempting to control factory field devices. Be aware that Wonderware does not
provide technical support for problems that may arise as a result of changes
that you make to the registry.

Changing FOE Registry Setting
If the ThreadingModel key for an FOE does not have the correct string value,
you cannot install the object in an InControl project. Moreover, the
ThreadingModel key must be "Both."for an FOE to operate efficiently in
InControl. If the key is "Apartment," access to the properties will be
significantly slower. Additionally, it is more likely that the FOE will adversely
affect the determinism of the runtime engine. This section describes how to
change the ThreadingModel key.

Note Do not change the threading model from "Apartment" to "Both" for
ActiveX Controls built using Visual Basic 5.0 or Visual Basic 6.0.

WARNING! If the FOE is not designed to run under the free-threaded model,
changing the value of the ThreadingModel may cause the object to run in an
unpredictable manner. For example, deadlock may occur, or corrupt values
may be read, with the potential risk of death or injury to personnel and/or
damage to equipment.

Test and verify that the object runs correctly after changing the
ThreadingModel value before using the FOE to control factory floor
equipment. Because even exhaustive testing may not reveal problems that can
occur in a runtime environment, it is highly recommended that you consult
with the developer of the FOE to verify that it will operate correctly with
InControl.

To edit the registry:

1. Click Start on the Taskbar, then click Run.

2. Type regedit in the Run dialog box. The Registry Editor opens.

3. Search for the name of the FOE. For example, to search for the PID FOE,
click Find on the Edit menu and enter "Wonderware PID" in the Find
What field.

4. Expand the open folder in the registry tree and double-click the
InprocServer32 key.
Wonderware InControl Environment User’s Guide

206 Chapter 9
5. Verify that the string value of ThreadingModel is "Both" as shown below.

Threading Model String Value

6. If you need to edit the value, double-click the value name and enter Both
in the Value Data field.

If a ThreadingModel value does not exist, you can create a new one.

1. Right-click and create a new string value, as shown below.

New Threading Model String Value

2. Enter ThreadingModel for the value name.

3. Double-click the new value and enter Both in the Value Data field.

Displaying Compiler Warnings
If your programs have any code for testing or simulating your process and it
writes to I/O input variables, a warning message appears when the programs
are validated. You can have the compiler issue an error message instead of a
warning. This can be done for a program only, or it can be made specific to a
user account and affect all projects.

To make the change at the program level, include the following #pragma
statement in an SFC or Structured Text program:

#pragma IOWriteError

For more information about using the #pragma statement, see "#pragma" in the
InControl STL Reference Manual.

To make the change for a user account, you need to set a bit in the CPOption
key under the following path in the registry.
HKEY_CURRENT_USER\

SOFTWARE\
WONDERWARE\

INCONTROL
Wonderware InControl Environment User’s Guide

InControl System Administration 207
WARNING! Making incorrect changes in the Windows registry can result in
unpredictable operation by InControl and I/O devices. This has the potential
risk of injury or death to personnel and/or damage to equipment. Always verify
that the changes you make in registry keys will not adversely affect the
operation of the computer or the applications you intend to run before
attempting to control factory field devices. Be aware that Wonderware does not
provide technical support for problems that may arise as a result of changes
that you make to the registry.

If the CPOption key does not exist, create a new (DWORD value) key and
label it CPOption.

For the compiler to issue a warning, set bit 6 to 0. This is the default value. For
the compiler to issue an error, set bit 6 to 1.

For example, assuming no other bits are set to 1, write 20H to the CPOption
key to have the compiler issue error messages instead of warnings. You can
have no messages issued at all, but this can only be done with the #pragma
statement.
Wonderware InControl Environment User’s Guide

208 Chapter 9
Issuing Runtime Engine Commands
Two functions are associated with the runtime engine: ExecProgramCommand
and ExecProjectCommand. To execute these functions, call them from another
InControl program (Structured Text or SFC). The command values used by
these functions are summarized in the table below.

Project Information Command Values

For a program, use the following syntax:
RTEngine.ExecProgramCommand(“programname”,<commandvalue>)

For a project, use the following syntax:
RTEngine.ExecProjectCommand (<command value>)

Function
Command
Value Command Result

ExecProgramCommand Step Single step a program.
ExecProgramCommand
or ExecProjectCommand

ClearFaults Clear faults (program or
project).

ExecProgramCommand
or ExecProjectCommand

ReportStatus Provides runtime engine status
data, such as current project,
time stamp, scan time, mode,
processor utilization, faulted
programs, I/O faults, etc.

ExecProjectCommand PowerFailOn Simulates a power failure by setting
the RTEngine.PowerFail symbol to
TRUE.

ExecProjectCommand PowerFailOff Simulates a recovery from a power
failure by setting the
RTEngine.PowerFail symbol to
FALSE.

ExecProjectCommand SaveRetentive Save retentive values for a
project.
Wonderware InControl Environment User’s Guide

InControl System Administration 209
Value/Time/Quality Support
The runtime engine reports Value/Time/Quality (VTQ) information.
Applications, such as InTouch and IndustrialSQL, that can connect to
InControl with the SuiteLink or DDE 3 protocol, are able to obtain this data.

Runtime engine data values, such as memory tags, have a timestamp based on
the last scan. The quality is reported as follows:

• Good indicates that the runtime engine is not in the Fault mode.

• Bad indicates that the runtime engine is in the Fault mode.

The timestamp and quality for data values from an instruction processor (IP),
such as an ActiveX control or an I/O driver, is determined by the IP. Quality is
determined as follows, based on the program mode:

• Stopped mode—Quality is reported as Bad.

• Fault mode—Quality is reported as Bad and the device has failed.

• Idle—Quality is reported as Uncertain, and Stale.

When you are using the DDE 3 protocol, updates are sent to clients when either
the value or the quality changes. However, if you are using the DDE 2
protocol, only value changes are transmitted.
Wonderware InControl Environment User’s Guide

210 Chapter 9
Entering Event Viewer Settings
The Windows Event Viewer monitors events as they occur in your hardware
unit. It receives messages from the runtime engine and I/O drivers, for
example. If the buffer space that you have allocated for holding the messages
becomes full, preventing the Event Viewer from receiving messages, the
runtime engine service may stop.

WARNING! Allowing the Event Viewer log to become full and unable to
receive system messages may cause the runtime engine service and all
programs to stop unexpectedly. This can result in unpredictable operation by
field devices and cause death or injury to personnel and/or damage to
equipment. If you receive a message from the Event Viewer indicating that it is
becoming full, take action to clear the log. It is recommended that you choose
the Overwrite Event as Needed option in the Event Log Settings dialog box.
Wonderware InControl Environment User’s Guide

Reserved Words 211
A P P E N D I X A

Reserved Words

The words listed in the following table are InControl reserved words. Avoid
using any of these reserved words in your program code.
Wonderware InControl Environment User’s Guide

212 Appendix A
InControl Reserved Words
ABORT_ALL ABS ABTAL
ACOS ACTION ADD
AND ANDN ANDT
ANDTN ANY ANY_BIT
ANY_DATE ANY_INT ANY_NUM
ANY_REAL APPENDFILE ARRAY
ARRAY_TO_STRING ASIN AT
ATAN

BCD_TO_INT BEGIN BEGIN_IL
BOOL BREAK BY
BYTE

CAL CALC CALCN
CASE CLOSEFILE CONCAT
CONFIGURATION CONSTANT COPYFILE
COS CTD CTU
CTUD

D DATE DATE_AND_TIME
DATE_TO_REAL DATE_TO_STRING DELETE
DELETEFILE DINT DIV
DO DS DT
DWORD

ELSE ELSEIF ELSIF
END END_ACTION END_CASE
END_
CONFIGURATION

END_FOR END_FOR_NOWAIT

END_FUNCTION END_FUNCTION_
BLOCK

END_IF

END_IL END_PROGRAM END_REPEAT
END_REPEAT_
NOWAIT

END_RESOURCE END_STEP

END_STRUCT END_TRANSITION END_TYPE
END_VAR END_WHILE END_WHILE_

NOWAIT
EQ EXIT EXP
EXPT
Wonderware InControl Environment User’s Guide

Reserved Words 213
F_EDGE F_TRIG FALSE
FB FILE FIND
FOR FROM FUNCTION
FUNCTION_BLOCK
GE GLOBAL GOTO
GT

IF INCLUDE INITIAL_STEP
INSERT INT INT_TO_BCD
INT_TO_REAL INT_TO_STRING INTERVAL

JMP JMPC JMPCN

L LD LDN
LE LEFT LEN
LIMIT LINT LN
LOG LREAL LT
LWORD

MACROSTEP MAX METHOD
MID MIN MOD
MODE MOVE MSGWND
MUL MUX

N NE NEWFILE
NOT NOW

OF ON OPENFILE
OR ORN ORT
ORTN

P POW PRIORITY
PROGRAM PW

R R_EDGE R_TRIG
READ_ONLY READ_WRITE READFILE
REAL REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING REAL_TO_TIME REPEAT
REPLACE RESOURCE RET
Wonderware InControl Environment User’s Guide

214 Appendix A
RETAIN RETC RETCN
RETURN REWINDFILE RIGHT
ROL ROR RS
RUNG

S SCAN SD
SEL SHL SHR
SIN SINGLE SINT
SL SQRT SR
ST START STEP
STN STRING STRING_TO_ARRAY
STRING_TO_DATE STRING_TO_INT STRING_TO_REAL
STRING_TO_TIME STRUCT STT
STTN SUB

T TAN TASK
THEN TIME TIME_OF_DAY
TIME_TO_REAL TIME_TO_STRING TMR
TO TOD TODAY
TOF TON TP
TRANS TRANSITION TRUE
TRUNC TYPE

UDINT UINT ULINT
UNTIL USINT

VAR VAR_ACCESS VAR_EXTERNAL
VAR_GLOBAL VAR_IN_OUT VAR_INPUT
VAR_OUTPUT

WHILE WITH WORD
WRITEFILE

XOR XORN
Wonderware InControl Environment User’s Guide

Data Types 215
A P P E N D I X B

Data Types

This appendix provides a quick reference to the data types supported by
InControl. For more information about the data types, see Chapter 6, "Defining
Variables."

Contents
• Data Type Categories

• Data Type Ranges
Wonderware InControl Environment User’s Guide

216 Appendix B
Data Type Categories
Data Types and Categories

All Types Group SubGroup Data Type
ANY ANY_NUM ANY_REAL LREAL

REAL
ANY_INT DINT

INT
SINT
DWORD ¹

WORD ¹

BYTE
ANY_BIT DWORD

WORD
BYTE
BOOL

ANY_DATE DT (date and
time)
DATE
TOD
TIME
TMR ²

FILE ²

STRING
User-Defined
ANY

Enumeration RTEMODE
Note The LINT, ULINT, and LWORD data types are not currently supported

by InControl.

1 The UDINT, UINT, and USINT data types are equivalent to the
DWORD, WORD and BYTE data types respectively. An InControl
enhancement to the ANY_BIT data types makes the UDINT, UINT,
and USINT data types unnecessary.

2 Enhancement to the IEC 61131-3 specification.
Wonderware InControl Environment User’s Guide

Data Types 217
WARNING! IEC-61131 does not support the combination of signed and
unsigned numbers (ANY_NUM data types) in a math calculation. If you do
combine signed and unsigned numbers, the results of the math operation may
not be what you expect, which may have the potential risk of death or injury to
personnel and/or damage to equipment. Avoid using expressions that combine
signed and unsigned numbers.
Wonderware InControl Environment User’s Guide

218 Appendix B
Data Type Ranges
Data Type Range
LREAL -1.79769313486231 E308 (negative) to +1.79769313486231 E308

(positive) and includes zero.When you communicate with the
runtime engine using a SuiteLink/DDE interface,
includingInTouch, 64 bit LREAL data types are transmitted at
32-bit precision.

REAL -3.402823 E38 (negative), to +3.402823 E38 (positive), and includes
zero.

DINT -2147483648 to +2147483647

INT -32768 to +32767

SINT -128 TO +127

DWORD 0 to 4294967295

WORD 0 to 65535

BYTE 0 to 255

BOOL TRUE or FALSE

DT Format: DATE_AND_TIME | date_and_time | DT | dt#YYYY-
MM-DD-HH:MM:S.S
YYYY (100-2100) = year
MM (1-12) = month
DD (1-31) = day of the month
HH (0-23) = hour
MM (0-59) = minute
S.S (0.0-59.0) = seconds (real number)

DATE Format: DATE | date | D | d#YYYY-MM-DD
YYYY (100-2100) = year
MM (1-12) = month
DD (1-31) = day of the month
Wonderware InControl Environment User’s Guide

Data Types 219
FILE Has three system input variables, which are identified by the
function control block name (fcb) plus an extension.
fcb.ACCESS Byte variable specifies read/write status of

file after it opens.
0 = (default) file is open for read/write
operations.
1 = file is open for read-only operations.
2 = file is open for write-only operations.

fcb.APPEND Boolean variable specifies whether data can
be appended to the file after it opens.Only
valid when file is open with write status.
That is, the ACCESS variable = 0 or 2.
TRUE = data will be appended to the file.
FALSE = (default) data cannot be appended
to the file.

fcb.SHARE Byte variable specifies how other
applications can access the file after it is
open.
0 = (default) other applications access file for
read-write operations.
1 = other applications access file for read-
only operations.
2 = other applications access file for write-
only operations.
3 = other applications cannot access the file.

Has eight system output variables, which are identified by the
function control block name (fcb) plus an extension.
fcb.OPEN Boolean variable that indicates the file has

been opened.
fcb.BUSY Boolean variable that indicates the file is

being accessed.
fcb.EFLAG Boolean variable indicates when an error

occurs.
fcb.RDN Boolean variable that indicates a read

operation has been completed.
fcb.WDN Boolean variable that indicates a write

operation has been completed.
fcb.CLSD Boolean variable that indicates a file has

been closed.
fcb.EOF Boolean variable that indicates the system

encountered an End Of File.
fcb.ERR Integer variable that contains the error code

if an error occurs.

Data Type Range
Wonderware InControl Environment User’s Guide

220 Appendix B
STRING Format: ‘ Character_representation ’
Character_representation = any printable character up to 1024
characters.
A $ followed by two hexadecimal digits, enclosed in single
quotation marks, is interpreted as the hexadecimal
representation of the eight-bit character code. Example: ‘ $41
$42 $43 ’ is interpreted as A B C.
To designate these characters, use the following formats:
Dollar sign = ‘ $$ ’
Single quote = ‘ $’
Line feed = ‘ $L ’ or ‘ $l ’
New line = ‘ $N ’ or ‘ $n ’
Form feed = ‘ $P ’ or ‘ $p ’
Carriage return = ‘ $R ’ or ‘ $r ’
Tab = ‘ $T ’ or ‘ $t ’

TIME Format: TIME | time | T | t #Days | Hours | Minutes | Seconds |
Milliseconds
Days = xD, where x = an integer (0-10675199), e.g. 5D.
Hours = xH,
where x = an integer (0-23), e.g., 7H.
Minutes = xM, where x = an integer (0-59), e.g., 5M.
Seconds = xS, where x = an integer (0-59), e.g., 5S.
Milliseconds = x MS, where x = an integer (0-999), e.g.,
200MS.

Example: T#1D20H13M15S500MS is interpreted as 1
day, 20 hours, 13 minutes, 15 seconds, and 500
milliseconds.
Example: t#1d2h31M6s5ms is interpreted as 1 day, 2
hours, 31 minutes, 6 seconds, and5 milliseconds.Format:
TIME | time | T | t #Days | Hours | Minutes | Seconds |
Milliseconds

The maximum time that you can enter through a program,
HMI, or Watch window is +/- 10675199d2h48m5s477ms.
Values greater than this that are entered through the Watch
window or the Symbol Manger will generate an error.

TMR Has four system variables, which are identified by the timer
name plus an extension. Tmr_name.PT contains the preset
time value. This variable is retentive. That is, it retains its value
during a power loss.
Tmr_name.EN starts/stops the TMR and is a BOOLEAN data
type. Tmr_name.ET contains the elapsed time of the TMR in
seconds. Tmr_name.Q contains the TMR output.

TOD Format: TIME_OF_DAY | time_of_day | TOD |
tod#HH:MM:SS
HH (0-23) = hour
MM (0-59) = minute
S.S (0.0-59.0) = second

User-
Defined

Consists of a set of data types that function as a group. The
members do not all have to be the same data type. Ranges are
determined by the data type for each individual member.

Data Type Range
Wonderware InControl Environment User’s Guide

Data Types 221
ANY Range depends on the data type that the symbol currently has.
RTEMODE Valid values are: COMPLETE, FAULT, LOADED, PAUSE, PROGRAM,

RUN, SCAN, STOP, UNKNOWN

Data Type Range
Wonderware InControl Environment User’s Guide

222 Appendix B
Wonderware InControl Environment User’s Guide

Monitoring Data By DDE/SuiteLink 223
A P P E N D I X C

Monitoring Data By
DDE/SuiteLink

This appendix provides information about how to monitor InControl variables
from other applications.

Contents
• Overview

• Monitoring Variables from InTouch

• Monitoring Variables from Excel
Wonderware InControl Environment User’s Guide

224 Appendix C
Overview
You can monitor InControl variables from another application, such as
InTouch or Excel, for example. You can use either the DDE or the SuiteLink
protocol. This appendix describes how to use DDE and InControl operates as a
DDE server.

If the application is on a remote node, you need to configure DDE Shares for
that node.

For information about using SuiteLink, which allows InControl to operate as a
SuiteLink client, see the Wonderware InControl SuiteLink Version 2 User’s
Guide.

Note Some applications, such as Excel, may not be able to monitor the
elements in arrays or the members of structures.
Wonderware InControl Environment User’s Guide

Monitoring Data By DDE/SuiteLink 225
Monitoring Variables from InTouch
InTouch can receive data from InControl when you create DDE items in the
InTouch Tagname Data Dictionary.

For detailed instructions about how to use a DDE connection to monitor
anInControl variable from InTouch, see the InTouch User’s Guide.

When you create a DDE item, you need the following information:

For the application name, use RTEngine.

For the topic, use TagName.

For the item name, use the name of the variable that you want to monitor,
following these rules:

• To reference a global InControl variable, use only the name of the
variable.

• To reference a local InControl variable, precede the variable name with the
program name followed by a period. For example, if the program name is
SeamWeld, and the variable name is weld_done, use
Seamweld.weld_done as the DDE item name.

• To reference a user-defined data type, precede the name of the member
with the name of the variable of the user-defined data type followed by a
period. For example if the user-defined data type variable is Device_Status
and the member of the Device_Status variable that you want to monitor is
Speed, use Device_Status.Speed as the DDE item name.

When you display SuiteLink tags in the InControl Watch window, you may
observe that their values are changing, even when the tags have been forced.
This is due to the reflection of pokes by a SuiteLink server to other clients. You
can prevent this by making a change to the Windows registry.

WARNING! Making incorrect changes in the Windows registry can result in
unpredictable operation by InControl and I/O devices. This has the potential
risk of injury or death to personnel and/or damage to equipment. Always verify
that the changes you make in registry keys will not adversely affect the
operation of the computer or the applications you intend to run before
attempting to control factory field devices.
Be aware that Wonderware does not provide technical support for problems
that may arise as a result of changes that you make to the registry.

To change the registry setting:

1. Edit the registry at the following location.
HKEY_LOCAL_MACHINE\

SOFTWARE\
WONDERWARE\

INCONTROL

2. Create a new key called SuiteLinkReflectPokes. It must be a DWORD.

3. Assign the key a value of 0. This prevents the server from reflecting pokes
received via SuiteLink to other clients.
Wonderware InControl Environment User’s Guide

226 Appendix C
Monitoring Variables from Excel
Excel can read data from InControl when you create a DDE remote reference
in a cell.

Note Some applications, such as Excel, may not be able to monitor the
elements in arrays or the members of structures.

In the following figure, the value of the InControl local variable Vari_b
(program STL1) is monitored in cell A1.

Excel Example Click to see figure.

The formula in A1 is

=RTEngine|TagName!STL1.Vari_b

where

= is the Excel operator Equal To

RTEngine is the application name

| is the pipe symbol used to separate the application name from the topic
name

TagName is the topic name (spelled as shown in the example)

! is the delimiter between the topic name and the variable name, and

Vari_b is the name of the InControl variable being monitored in program
STL1.

You can list any variable name here.

To reference a local InControl variable, precede the variable name with the
program name followed by a period. For example, if the program name is
PowerUp, and the variable name is lights_on, use PowerUp.lights_on as the
DDE item name.

To reference a user-defined data type, precede the name of the member with
the name of the data type followed by a period. For example if the user-defined
data type is Time and the member of the Time structure that you want to
monitor is Hour, use Time.Hour as the DDE item name.
Wonderware InControl Environment User’s Guide

Monitoring Data By DDE/SuiteLink 227
This formula is dynamic and updates the value in A1 continually. For more
information about entering formulas in an Excel spreadsheet, see the Excel
user documentation.

You must configure DDE Shares for the application "RTEngine."
Wonderware InControl Environment User’s Guide

228 Appendix C
Wonderware InControl Environment User’s Guide

Extensions to IEC 61131-3 229
A P P E N D I X D

Extensions to IEC 61131-3

This appendix describes enhancements and other extensions to the IEC 61131-
3 specification. InControl complies with IEC 61131-3 except where noted in
this appendix and in the InControl Language Editors manual.

Contents
• Data Types

• Parameters Specific to InControl

• Error Conditions
Wonderware InControl Environment User’s Guide

230 Appendix D
Data Types
For more information about data types, see the "Defining Variables" chapter.

Unsupported Data Types
InControl does not support the following data types, which are defined in the
IEC 61131-3 specification.

• LINT

• ULINT

• LWORD

The UDINT, UINT, and USINT data types are equivalent to the DWORD,
WORD, and BYTE data types, respectively. An InControl enhancement to the
ANY_BIT data types makes the UDINT, UINT, and USINT data types
unnecessary.

Data Type Conversion
InControl does a limited automatic conversion of data types. It is not necessary
to use the IEC-specified INT_TO_REAL and REAL_TO_INT functions,
because conversion is handled internally by the RLL MOVE function block
and the Structured Text Assignment statement.

For REAL to integer data conversions, InControl truncates the result. If you
need to round off the result, add 0.5 to the REAL value before converting it to
an integer. You can also create a user-defined function to do rounding
operations as needed.

For more information about how InControl handles data type conversion, see
"Data Type Conversion" in the "Defining Variables" chapter.
Wonderware InControl Environment User’s Guide

Extensions to IEC 61131-3 231
Parameters Specific to InControl
InControl parameters, which are implementation specific, are listed in the
following table.

Implementation-Dependent Parameters

Clause Parameter Implementation
1.5.1 Error handling procedures. See "Error Conditions."
2.1.1 National characters used. None
2.1.2 Maximum length of identifiers. 100
2.1.5 Maximum comment length. Not limited
2.2.3.1 Range of values of duration. Range of REAL in ms
2.3.1 Range of values for variables of

TIME data type.
Range of REAL in ms

2.3.1 Precision of representation of seconds
in data types
TIME_OF_DAY and
DATE_AND_TIME.

Range of REAL in ms

2.3.3 Maximum number of array
subscripts.

1

2.3.3 Maximum array size. Limited by space used
by all symbols.

2.3.3 Maximum number of structure
elements.

Limited by space used
by all symbols.

2.3.3 Maximum structure size. Limited by space used
by all symbols.

2.3.3 Maximum number of variables per
declaration.

Limited by space used
by all symbols.

2.3.3.1 Maximum number of enumerated
values.

n/a

2.3.3.2 Default maximum length of STRING
variables.

1024

2.3.3.2 Maximum allowed length of
STRING variables.

1024

2.4.1.1 Maximum number of hierarchical
levels.

n/a

2.4.1.1 Logical or physical mapping. Logical
2.4.1.2 Maximum number of subscripts. 1
2.4.1.2 Maximum range of subscript values. Not limited.
2.4.1.2 Maximum number of levels of

structures.
Not limited.

2.4.2 Initialization of system inputs. Same as all variables.
2.4.3 Maximum number of variables per

declaration.
n/a
Wonderware InControl Environment User’s Guide

232 Appendix D
2.5.1.1 Method of function representation. Names and function
blocks.

2.5.1.3 Maximum number of function
specifications.

Limited by space used
by all symbols.

2.5.1.5 Maximum number of inputs of
extensible functions.

2

2.5.1.5.1 Effects of type conversions on
accuracy.

n/a

2.5.1.5.2 Accuracy of functions of one
variable.

Same as C library
function accuracy.

2.5.1.5.2 Implementation of arithmatic
functions.

Same as C library
function accuracy.

2.5.2 Maximum number of function block
specifications and instantiations.

n/a

2.5.2.3.3 PVmin, PVmax of counters. Of DINT type.
2.5.3 Program size limitations. Not limited.
2.6.2 Precision of Step elapsed time. ms
2.6.2 Maximum number of Steps per SFC. Not limited.
2.6.3 Maximum number of Transitions per

SFC and per Step.
Not limited.

2.6.4 Action control mechanism. Graphical declaration
in RLL language.

2.6.4.2 Maximum number of Action blocks
per Step.

Not limited.

2.6.5 Graphic indication of Step state. Step is highlighted.
2.6.5 Transition clearing time. One scan.
2.6.5 Maximum width of diverge/converge

constructions.
Not limited.

2.7.1 Contents of resource libraries. n/a
2.7.2 Maximum number of tasks. Not limited.
2.7.2 Task interval resolution. ms
2.7.2 Preemptive or non-preemptive

scheduling.
Non-preemptive.

3.3.1 Maximum length of expressions. Not limited.
3.3.1 Partial evaluation of Boolean

expressions.
Full evaluation.

3.3.2 Maximum length of statements. Not limited.
3.3.2.3 Maximum number of CASE

selections.
Not limited.

3.3.2.4 Value of control variable upon
termination of FOR loop.

One beyond final
value.

4.1.1 Graphic/semigraphic representation. Graphic.

Clause Parameter Implementation
Wonderware InControl Environment User’s Guide

Extensions to IEC 61131-3 233
4.1.1 Restrictions on network topology. Match convergences
and divergences.

4.1.3 Evaluation order of feedback loops. n/a

Clause Parameter Implementation
Wonderware InControl Environment User’s Guide

234 Appendix D
Error Conditions
The error conditions defined in IEC 61131-3 are listed in the following table.
The method of detection (program preparation or program execution) is listed.

Clause Error Condition Detection
2.3.3.1 Value of a variable exceeds the specified

subrange.
Preparation and
Execution.

2.4.2 Length of initialization list does not match
number of array entries.

n/a

2.5.1.5.1 Type conversion errors. n/a
2.5.1.5.2 Numerical result exceeds range for data type. Execution.
2.5.1.5.2 Division by zero. Execution.
2.5.1.5.4 Mixed input data types to a selection

function.
n/a

2.5.1.5.4 Selector (K) out of range for MUX function. n/a
2.5.1.5.5 Invalid character position specified. Execution.
2.5.1.5.5 Result exceeds maximum string length. Execution.
2.5.1.5.6 Result exceeds range for data type. Execution.
2.6.2 Zero or more than one initial Steps in SFC

network.
Preparation.

2.6.2 User program attempts to modify Step state
or time.

Preparation.

2.6.2.5 Simultaneously true, non-prioritized
Transitions in a selection divergence.

n/a

2.6.3 Side effects in evaluation of Transition
condition.

n/a

2.6.4.5 Action control contention error. Execution.
2.6.5 Unsafe or unreachable SFC. Preparation.
2.7.1 Data type conflict in VAR_ACCESS. Preparation.
2.7.2 Tasks require too many processor resources. Execution.
2.7.2 Execution deadline not met. Execution.
2.7.2 Other task scheduling conflicts. Execution.
3.2.2 Numerical result exceeds range for data type. Execution.
3.3.1 Division by zero. Execution.
3.3.1 Invalid data type for operation. Execution.
3.3.2.1 Return from function without value assigned. n/a
3.3.2.4 Iteration fails to terminate. None.
4.1.1 Same identifier used as connector label and

element name.
Preparation.

4.1.4 Uninitialized feedback variable. n/a
Wonderware InControl Environment User’s Guide

Extensions to IEC 61131-3 235
Note InControl does not always indicate overflow and range errors to the user
at execution time. This exception to the IEC 61131 specification was made to
improve performance. The user must customize error checking for critical code
segments to suit the control application.
Wonderware InControl Environment User’s Guide

236 Appendix D
Wonderware InControl Environment User’s Guide

Keyboard Shortcuts 237
A P P E N D I X E

Keyboard Shortcuts

This appendix lists the shortcut key combinations for the InControl tools and
menu options. These shortcut keys are based on the U.S. keyboard. If you are
using a keyboard for a different language, you may need to change your
shortcut key combinations.

Contents
• General Operations

• Project Window

• Output Window

• Project Manager

• Watch Window

• Program Editors

• Symbol Manager

• Symbol Picker
Wonderware InControl Environment User’s Guide

238 Appendix E
General Operations
Menu Bar Shortcuts

Operation
Key or Key
Combination

Select All. Ctrl A
Open new program. Ctrl N
Open existing program. Ctrl O
Print selected program. Ctrl P
Save selected program. Ctrl S
Copy selected item to clipboard. Ctrl C
Paste contents of clipboard. Ctrl V
Cut selected item and place it in the clipboard. Ctrl X
Undo last operation. Ctrl Z
Redo or repeat last operation. Ctrl Y
Find selected item. Ctrl F
Find next occurrence of selected item. F3
Replace selected item. Ctrl H
Delete selected item. DEL
Open Symbol Manager. Ctrl T
Display Online Help. F1
Set runtime engine to Stop mode. Ctrl Break
Step program. F10
Validate project. F4
Validate program. Shift F4
Run project. F5
Run program. Shift F5
Download project. Ctrl F5
Download program. Shift Ctrl F5
Pause project. F7
Pause program. Shift F7
Single scan project. F8
Single scan program. Shift F8
Toggle breakpoints. F9
Clear all breakpoints. Shift Ctrl F9
Wonderware InControl Environment User’s Guide

Keyboard Shortcuts 239
Window Operations

Project Window
File and Window Shortcuts

Output Window
Window Shortcuts

Operation
Key or Key
Combination

Switch focus between Project window, Watch window,
Output window, and Development/Runtime window.

ALT F6

Display Project Window. Ctrl J
Display Block Palette. Ctrl B
Display Watch Window. Ctrl W
Switch focus between programs open in the editor window. Ctrl F6

Operation
Key or Key
Combination

Delete selected program. DEL
Open selected program for editing. Enter
Display properties for selected program. ALT Enter
Display properties for selected program. F2 or Alt Enter

Operation
Key or Key
Combination

Copy selected text to the clipboard. Ctrl C
Clears window of all information, whether or not any text is
selected.

DEL
Wonderware InControl Environment User’s Guide

240 Appendix E
Project Manager
File Shortcuts

Watch Window
Toolbar Shortcuts

Operation
Key or Key
Combination

Create new project. Ctrl N
Open selected project. Enter or Ctrl O
Delete selected project. DEL
Display properties for selected project. F2 or Alt Enter

Operation
Key or Key
Combination

Copy selected item to clipboard. Ctrl C
Paste contents of clipboard. Ctrl V
Cut selected item and place it in the clipboard. Ctrl X
Remove selected symbol. DEL
Modify selected value. Ctrl M
Unforce selected symbol. Ctrl U
Unforce all symbols. Ctrl A
Set number base for selected symbol to binary. Ctrl B ¹

Set number base for selected symbol to octal. Ctrl O ¹

Set number base for selected symbol to decimal. Ctrl D ¹
Set number base for selected symbol to hexadecimal. Ctrl H ¹
Insert row. INS
Swap focus between symbol list and Watch Window table
list.

TAB

Display tables in Watch Window table list. ALT Down
Arrow

Expand a collapsed tree of symbols. Right Arrow
Move cursor to the right from a single symbol or an
expanded tree of symbols.

Right Arrow

Collapse an expanded tree of symbols. Left Arrow
Double-click any cell. F2
1 If an array or structure is expanded and the parent element has focus, the

change in number base is applied to all elements of the array or structure.
Wonderware InControl Environment User’s Guide

Keyboard Shortcuts 241
Program Editors
RLL Shortcuts

Structured Text Shortcuts

FOE Shortcuts

SFC Shortcuts

Operation
Key or Key
Combination

Insert a branch. Shift B
Insert a new rung. Shift R
Insert a contact. Shift C
Insert a coil. Shift O
Insert a function or function Block Shift F
Edit selected rung element. F2
Go to specified rung. Ctrl G
Display Block Palette. Ctrl B

Operation
Key or Key
Combination

Go to specified line or bookmark. Ctrl G
Select all text. Ctrl A
Mark current line. Ctrl L
Open the Symbol Manager. Ctrl T
Open the Symbol Manager.

Select a symbol and click OK to insert the selected
symbol into the program.

Shift Ctrl T

Insert a function or function Block Shift F
Display Block Palette. Ctrl B

Operation
Key or Key
Combination

Close configuration without saving changes entered in the
current tab.

ESC

Edit FOE properties. ALT Enter

Operation
Key or Key
Combination

Insert an Action. Shift A
Insert a Comment. Shift C
Insert a Select Divergence. Shift D
Insert a Jump. Shift J
Insert a Label. Shift L
Wonderware InControl Environment User’s Guide

242 Appendix E
Symbol Manager
Object and Window Shortcuts

Symbol Picker
Keyboard Shortcuts

Insert a Macro Step. Shift M
Insert a Loop. Shift O
Insert a Simultaneous Divergence. Shift P
Insert a Step. Shift S
Edit Step properties. ALT Enter
Insert a Transition. Shift T
Insert a Library Step. Shift Y
Edit selected program element. F2
Open Action Manager. Ctrl M
Close an Action. ESC
Open Transition Manager Ctrl R
Display Block Palette. Ctrl B

Operation
Key or Key
Combination

Open the Export Select Symbols dialog box. ALT E
Open the Open dialog box to import symbols. ALT I
Open the Print Select Symbols dialog box. ALT P
Select the next higher level of scoping. Backspace
Add a symbol. Insert
Delete a symbol. DEL
Display properties for selected symbol. ALT Enter

Operation
Key or Key
Combination

Display defined symbols. Ctrl Space
Create symbol (only when drop-down is shown) ALT C
Browse for symbol (only when drop-down is shown) ALT B
Wonderware InControl Environment User’s Guide

243

Index

Symbols
#, Number Format 96

A
Action Manager

Menu Bar Option 38
ActiveX 13
Add File To Project

Menu Bar Option 30
Address, Parameter

Changing in Function 78, 111
Changing in Function Block 74, 111

All Steps
Menu Bar Option 33

Animation, Program 33, 138
Enabling RLL 33
Enabling SFC 33
Update Rate 199

ANY Data Type Group 93
ANY Data Type, Defined 102
ANY_BIT Data Type Group 93
ANY_DATE Data Type Group 93
ANY_INT Data Type Group 93
ANY_NUM Data Type Group 93
ANY_REAL Data Type Group 93
Archiving Project Data 225
Arrange Icons

Menu Bar Option 38
Array

Creating 115
Auto Pagebreak

Menu Bar Option 33

B
Background Execution, Function 80
Base, Number 96
Bit

Assigning a Name (Indexing) 115
Forcing Indexed Bit 179
Indexing 115
Indexing, Forcing 179
Referencing Directly (Indexing) 115

Board (I/O) 53
Simulating 56

BOOL Data Type, Defined 97
Boolean Transitions

Menu Bar Option 31
Breakpoint, Structured Text 170
BYTE Data Type, Defined 96

C
Card (I/O) 53
Cascade

Menu Bar Option 38
Changing a Password 45
Clear Breakpoints

Menu Bar Option 37

Clear Faults 35, 83, 145, 151, 168, 215, 216
Close

Menu Bar Option 30
Close All

Menu Bar Option 38
Color

Display Selection 38
Compiler Options 228
Complete Symbol

Menu Bar Option 31
Configure

Menu Bar Option 34, 144
Runtime Engine 151

Configure Colors
Menu Bar Option 38

Configure Font
Menu Bar Option 38

Connect
Menu Bar Option 28, 144
Remote Node 223

Constant, Defining 90
Contact/Coil Bar

Menu Bar Option 32
Conversion

Data Types 106
Copy

Menu Bar Option 31
Standard Toolbar Option 27

Cross References
Display 110
File 123, 125
Print 30
Report 119

Cut
Menu Bar Option 31
Standard Toolbar Option 27

D
Data Type 93

ANY 102
BOOL 97
BYTE 96
Conversion 106
DATE 98
DINT 95
DT 98
DWORD 96
FILE 102
INT 95
LREAL 95
REAL 95
RTEMODE 104
SINT 96
STRING 104
TIME 99
TMR 101
TOD 99
UDINT 96
UINT 96
User-Defined 105
FooterGuideName Variable

244 Index
USINT 96
WORD 96

DATE Data Type, Defined 98
Debug Toolbar

Options 29
Debugging a Program/Project 168
Delete

Menu Bar Option 31
Deleting

Function 69
Function Block 69
I/O Driver Configuration 55
Macro 69
Program 69
Project 65

Development Window 24
DINT Data Type, Defined 95
Disconnect

Menu Bar Option 28, 144
Distributed Control 222
Download Program

Menu Bar Option 28, 35, 145
Download Project

Menu Bar Option 28, 35, 145
Downloading

Program 159
Project 156, 225
Variables 157, 160

Driver (I/O)
Adding New 82
Adding to a Project 54
Deleting 82
Excluding from Download 82
Removing 82
Simulating 56
Supported 53

DT Data Type, Defined 98
DWORD Data Type, Defined 96

E
Edit Element

Menu Bar Option 31
EN, System Variable 101
Enumerated Variables 91
Enumeration, User-Defined Data Type 105, 117
Error Condition

Clearing 215
ET, System Variable 101
Events

Menu Bar Option 32
Excel

Monitoring Variables 248
Execution Order

Program 166
Execution Priority

Program 167
Exit

Menu Bar Option 30

F
Factory Object 13
Factory Object Bar (InControl)

Menu Bar Option 33
Fault Mode

Clearing 168, 215, 216
Program 25, 26, 83, 120, 144, 151, 168, 180, 216
Reporting 34, 83, 144, 151
Runtime Engine 26, 34, 121, 144, 150, 151, 152,

164, 198, 215, 231
File Control Variables 102
FILE Data Type, Defined 102
FILE, System Variable 102, 103
Find

Menu Bar Option 31
Find Next

Menu Bar Option 31
FOE (Factory Object) 13

Adding to Project 134
Editing 135
Installing 131
Interacting With 138
Organizing 133
Threading Model 139
Uninstalling 133
Update Rate 200

FOE Toolbar 136
Font

Display Selection 38
Forced Variables 91, 92
Forcing/Unforcing Variables 90, 178, 179, 181, 200,

218
Function

Adding 68
Adding New 66
Background Execution 80
Defining Parameters/Variables 77
Deleting 69
POU Definition 61
Removing 69
Renaming 69
Runtime Engine 230
Specifying Return Value 79

Function Block
Adding 68
Adding New 66
Defining Instance 60, 75
Defining Parameters/Variables 72
Deleting 69
POU Definition 60
Removing 69
Renaming 69

Function Block Details
Menu Bar Option 33

Function Block Palette
Menu Bar Option 32

G
Global Variables, Defined 89
Go To

Menu Bar Option 31
Go To Coil

Menu Bar Option 31
FooterGuideName Variable

245
I
I/O Driver (I/O)

Adding New 82
Adding to a Project 54
Deleting 82
Excluding from Download 82
Removing 55, 82
Simulating 56
Supported 53

I/O Points 56
As Variables 56, 89
Configuring Remote Node 226

Icon, Runtime Indicators 26
IEC-61131 12
InControl

Adding a User 45
Changing a Password 44
Configuring Security 42
Data Types 93
Deleting a User Name 46
Exporting Symbols Between Projects 123
Installing

FOE 131
Locking SFC Algorithms 47
Logging Off 44
Logging On 44
Power Failure Autostart 219
Quickstart 19
Reserved Words 233
Running 19, 147
Serial Number 39
Uninstalling

FOE 133
Version Number 39, 197

InControl Factory Object 13
Indexed Bit

Defined 115
Forced 179

Indicator, Runtime Icons 26
Installing

FOE 131
Instance

Function Block, Defining 61, 75
INT Data Type, Defined 95
InTouch

Exporting Symbols To 124
Importing Symbols From 124
Menu Bar Option 38
Monitoring Variables 247
SuperTags And 124

L
Language

Programming, Supported 12
Local Variables, Defined 89
Lock Algorithms

Menu Bar Option 31
Logger

Menu Bar Option 32
Runtime Engine 214
Wonderware 188

Logging Off 44

Logging On 44
LREAL Data Type, Defined 95

M
Macro

Adding 68
Adding New 65
POU Definition 62
Removing 69
Renaming 69
Variable, Displaying in Watch Window 175

Mark Line
Menu Bar Option 31

Menu Bar
Edit Options 31
File Options 30
Help Options 38
Insert Options 32
Runtime Options 34
Tools Options 38
View Options 32
Window Options 38

Mode
Fault

Clearing 34, 83, 145, 151, 168, 216
Reporting 34, 83, 144, 151

Program System Variable 120, 180
Runtime Engine, Setting 144, 151, 161, 162, 164

Modifying Variables 178, 181
Monitoring Variables 174, 189
Monitoring Variables, Editor Window 187

N
Name Restrictions 62, 89
New

Menu Bar Option 30
Standard Toolbar Option 27

Node
Identifying Connected Node 148, 223
Remote, Connecting 223
Remote, Transferring Project Data 225
Remote, Watch Window 226

NOW, System Variable 98
Number Base 96

O
Open

Menu Bar Option 30
Standard Toolbar Option 27

Operating System
Targeting the Runtime Engine 64, 83, 84, 153, 158

Output
Menu Bar Option 32

P
Parameter

Changing Order 74, 78, 111
Function Block, Defining 72
Function, Defining 77

Password, Changing 45
Paste
FooterGuideName Variable

246 Index
Menu Bar Option 31
Standard Toolbar Option 27

Pause
Menu Bar Option 28, 34, 145

Pause Program
Menu Bar Option 28, 35, 146

POU (Program Organization Unit) 60
Function 61
Function Block 60
Macros 62
Program 60, 246

Power Failure
Detecting 218
Forced Variables, And 90, 179, 219
Recovery 219
Retentive Variables, And 90, 179, 219

Pragma
Structured Text 228

Print
Menu Bar Option 30
Standard Toolbar Option, 27

Print Setup
Menu Bar Option 30

Print XRef
Menu Bar Option 30

Priority
Program Execution 166

Processor Utilization
Setting 199

Program
Adding 68
Adding New 65
Debug, Enabling 170
Debugging 168
Deleting 69
Download Date 83
Downloading 159
Execution Order 166
Fault Mode 120, 168, 180, 216

Clearing 145, 151, 168, 216
Reporting 144, 151

FOE
Adding 134
Editing 135
Installing 131
Interacting With 138
Organizing 133
Threading Model 139
Uninstalling 133

Mode System Variable 120, 180
Modification Date 83
POU Definition 60
Priority 167
Removing 69
Renaming 69
Running 162
Single Scanning 170
Stepping 171
Stopping 165
Using Breakpoints 170
Validating 158

Program Changed Indicator 25
Program Comments

Menu Bar Option 33

Program Download Indicator 25
Program Organization Unit (POU) 60

Function Block 60
Functions 61
Macros 62
Name Restrictions 62
Program 60

Programming Languages
Supported 12

Project
Adding 64
Adding Function 68
Adding Function Block 68
Adding Macro 68
Adding Program 68
Archiving 225
Creating 19
Debugging 168
Defined 64
Downloading 156
Excluding Program from Download 157
Menu Bar Option 30, 32
Name/Description

Modifying 65
Program Execution Order 166
Program Priority 167
Project View Tab 64
Removing 64
Running 161
Running Multiple 222
Single Scanning 170
Standard Toolbar Option 27
Stopping 164
Targeting the Runtime Engine 64, 83, 84
Transferring Symbols Between Projects 123
Validating 154

Project View
Installing I/O Drivers 54, 82
Project Organization 64

PT, System Variable 101

Q
Q, System Variable 101
Quickstart

InControl 19

R
Read-Only Variables 91
REAL Data Type, Defined 95
Redo

Menu Bar Option 31
Registry Changes 228
Remote Node

Configuring I/O Points 226
Connecting 223
Setting Daylight 209
Setting Time 209
Setting Time Zone 209
Transferring Project Data 225
Watch Window 226

Remove File From Project
Menu Bar Option 30
FooterGuideName Variable

247
Removing
Function 69
Function Block 69
I/O Driver Configuration 55, 82
Macro 69
Program 69
Project 65

Renaming
Function 69
Function Block 69
Macro 69
Program 69

Replace
Menu Bar Option 31

Report Faults 34, 144, 151
Report Generation 119, 123
Requirements

System 14
Reserved Words 233
Retentive Variables 90, 179, 200, 219
Return Value

Function 79
RLL Program

Animation 33
RLL Transition Manager

Menu Bar Option 38
RTEMODE Data Type, Defined 104
Run Program

Menu Bar Option 28, 145
Run Project

Menu Bar Option 28, 34, 145
Rung Wrapping

Menu Bar Option 33
Running

InControl 19
Program 162
Project 161

Runtime Engine
Changing Target 83, 153, 158
Checking Status 207
Checking the Logger 214
Configuring 83
Connected Indicator 149
Connecting 147
Disconnecting 147
Fault Mode 121, 150, 152, 164, 198, 215, 231

Clearing 215
Functions 230
General Properties 197
Monitor Icon 149
Project Target 64, 83, 84, 153, 158
Service, Startup 217
Setting Mode 83, 144, 151, 161, 162, 164
Setting Scan Time 199
System Variables 121, 189
Value/Time/Quality (VTQ) Support 231

Runtime Highlighting
Enabling 33
Menu Bar Option 33
Update Rate 33, 200

Runtime Icons 25
Runtime Toolbar

Menu Bar Option 32
Options 28

Runtime Window 25

S
Save

Menu Bar Option 30
Standard Toolbar Option 27

Save All
Menu Bar Option 30
Standard Toolbar Option 27

Save As
Menu Bar Option 30

Scan
Defined 192
Setting 199
SuiteLink Server, Setting 199

Scan Time, Adjusting 121, 205
Scan Time, System Variable 121, 205
Scanner Board (I/O)

Simulated 56
Supported 53

Security
Adding a User 45
Changing a Password 44, 45
Configuring 42
Current User Access 42, 43
Deleting a User Name 45
Locking SFC Algorithms 47
Logging On/Off 44
Menu Bar Option 38

Select All
Menu Bar Option 31

Serial Number 38
Set Bookmark

Menu Bar Option 31
SFC Bar

Menu Bar Option 32
SFC Program

Algorithm
Locking 47

Animation 33
Show Call Stack

Menu Bar Option 37
Single Scan

Menu Bar Option 28, 35, 145
Single Scan Program

Menu Bar Option 28, 35, 146
Single Scanning

Program 170
Project 170

SINT Data Type, Defined 96
Software Version, Determining 38, 197
StandaloneWatch Window 184
Standard

IEC-61131 12
Standard Toolbar

Options 27
Starting/Stopping Runtime Engine Service 217
Status Bar 168

Menu Bar Option 32
Step a Program 171
Step Into

Menu Bar Option 37
Step Out
FooterGuideName Variable

248 Index
Menu Bar Option 37
Step Program

Menu Bar Option 37
Step Properties

Menu Bar Option 31
Stop

Menu Bar Option 28, 35, 145
Stop Program

Menu Bar Option 28, 35, 146
Stopping

Program Execution 165
Project Execution 164

STRING Data Type, Defined 104
Structure, User-Defined Data Type 105, 117
Structured Text Program

Statement
Pragma 228

Structured Text Toolbar
Menu Bar Option 32

SuiteLink Server
Setting Scan Time 199

SuperTags
Exporting to InTouch 125

Symbol Addresses
Menu Bar Option 33

Symbol Manager
Accessing 107
Menu Bar Option 38

Symbols
Creating 113
Exporting/Importing 123
Name Restrictions 62, 89
Report Generation 119, 123

System Requirements 14
System Variables 120

FILE 102
Mode (Program) 120, 180
NOW 98
Runtime Engine 121, 189
Scan Time 121, 205
TMR

EN 101
ET 101
PT 101
Q 101

TODAY 98

T
Tables

Adding to Watch Window 177
Customizing for Watch Window 177

Target Hardware Platform 64, 83, 84, 147
Threading Model, FOE 139
Tile

Menu Bar Option 38
Time

Daylight, Setting 209
Setting 209
Timezone, Setting 209

TIME Data Type, Defined 99
Timeline

Defined 192
TMR Data Type, Defined 101

TOD Data Type, Defined 99
TODAY

System Variable 98
Toggle Breakpoint

Menu Bar Option 37
Toolbar

FOE Bar 136
Menu Bar Option 32

U
UDINT Data Type, Defined 96
UINT Data Type, Defined 96
Undo

Menu Bar Option 31
Uninstalling

FOE 133
Uninterruptible Power Supply, Using 218
Update Rate

FOE 200
Runtime Highlighting 33, 200
Watch Window 181, 199, 200

Upload Configuration 31
Upload Program Values

Menu Bar Option 35, 145
Upload Project Values

Menu Bar Option 34, 145
Uploadable Variables 92
User Name

Adding 45
Deleting 45

User-Defined Data Type Enumeration, Creating 117
User-Defined Data Type Enumeration, Defined 105
User-Defined Data Type Structure, Creating 117
User-Defined Data Type Structure, Defined 105
User-Defined Data Type, Defined 105
USINT Data Type, Defined 96

V
Validate Program

Menu Bar Option 28, 35, 145
Validate Project

Menu Bar Option 28, 34, 145
Validation

Program 158
Project 154

Value/Time/Quality (VTQ) Support 231
Variables

Adding to Watch Window 174
Array 115
Constant Value 90, 175, 179
Creating 113
Data Types 93
Defined 89
Downloading 157, 160
Enumerated 91
Exporting/Importing 123
File Control 102
Forced 91, 92
Forcing 178, 200
Function Block, Defining 72
Function, Defining 77
I/O Points 89
FooterGuideName Variable

249
Modifying 178, 181
Monitoring 174, 247, 248
Monitoring, Editor Window 187
Name Restrictions 62, 89
Read Only 91, 92
Reading/Writing 192
Removing from Watch Window 176
Report Generation 119, 123
Retentive 90, 92, 179, 200, 219
System 120

FILE 102
Mode (Program) 120, 180
NOW 99
Runtime Engine 121, 189
Scan Time 122
TMR

EN 101
ET 101
PT 101
Q 101

TODAY 98
Unforcing 181
Uploadable 92
User-Defined Enumeration, Creating 117
User-Defined Enumeration, Defined 105
User-Defined Structure, Creating 117
User-Defined Structure, Defined 105

Version, Software
Determining 38, 197

VTQ Support 231

W
Watch Window

Adding Tables 177
Adding Variables 174
Customizing Tables 177
Forcing Variables 178
Menu 183
Modifying Variables 178, 182
Removing Variables 176
Standalone 184
Unforcing Variables 182
Update Rate 181, 199, 200

Watch/Force Variables
Menu Bar Option 28, 33

Watchdog Timeout 200
Window

Development 24
Runtime 25

WindowMaker
Menu Bar Option 38
Standard Toolbar Option 27

WindowViewer
Menu Bar Option 38
Standard Toolbar Option 27

Wonderware Logger 188
Word

Reserved 233
WORD Data Type, Defined 96

Z
Zoom

Menu Bar Option 33
FooterGuideName Variable

250 Index
FooterGuideName Variable

Wonderware®

InControl™ Language Editors User’s Guide
Revision H

Last Revision: July 2004

Invensys Systems, Inc.

All rights reserved. No part of this documentation shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Invensys Systems, Inc. No copyright or patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has
been taken in the preparation of this documentation, the publisher and the
author assume no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained
herein.

The information in this documentation is subject to change without notice and
does not represent a commitment on the part of Invensys Systems, Inc. The
software described in this documentation is furnished under a license or
nondisclosure agreement. This software may be used or copied only in
accordance with the terms of these agreements.

© 2001, 2004 Invensys Systems, Inc. All Rights Reserved.

Invensys Systems, Inc.
26561 Rancho Parkway South
Lake Forest, CA 92630 U.S.A.
(949) 727-3200
http://www.wonderware.com

Trademarks

All terms mentioned in this documentation that are known to be trademarks or
service marks have been appropriately capitalized. Invensys Systems, Inc.
cannot attest to the accuracy of this information. Use of a term in this
documentation should not be regarded as affecting the validity of any
trademark or service mark.

Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad, DT
Analyst, FactoryFocus, FactoryOffice, FactorySuite, FactorySuite A2,
InBatch, InControl, IndustrialRAD, IndustrialSQL Server, InTouch, InTrack,
MaintenanceSuite, MuniSuite, QI Analyst, SCADAlarm, SCADASuite,
SuiteLink, SuiteVoyager, WindowMaker, WindowViewer, Wonderware, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and
affiliates. All other brands may be trademarks of their respective owners.

Contents 3

Contents

CHAPTER 1: Relay Ladder Logic Program
Elements ..9

Power Flow - Solving Simple Contact/Coil Logic............................... 10
Power Flow - Function Blocks..11
RLL Extensions to IEC 61131-3 .. 12
Creating an RLL Program .. 13
The RLL Tools ... 14

Using the RLL Tool and Menu Bar .. 14
Editing Tips .. 15

Adding Contacts... 17
Adding Coils .. 19
Adding Rungs... 22
Adding OR Branches ... 22
Deleting OR Branches.. 25
Adding Labels and Jump Coils .. 26
Adding SFC Transition Coils ... 29
Adding Functions / Function Blocks.. 30

Predefined Functions / Function Blocks... 30
User-Defined Functions / Function Blocks 35

Adding a Comment .. 37

CHAPTER 2: Using the SFC Editor.................39
Creating an SFC Program .. 40
The SFC Tools.. 41

Using the SFC Tool and Menu Bar... 41
Editing Tips .. 42

Adding Program Elements ... 43
Adding a Step ... 43
Adding a Transition .. 44
Adding RLL Transitions... 45
Adding Boolean Transitions ... 47
Adding a Macro Step .. 48
Adding an Action.. 49
Adding New Actions .. 49
Editing New Actions .. 50
Editing Existing Actions... 50
Editing Parameters of an Existing Action .. 50
Deleting an Action.. 51
Renaming an Action ... 51
Adding a Jump.. 52
Adding a Label ... 53
Adding a Loop .. 54
Wonderware InControl Language Editors User’s Guide

4 Contents
Adding a Select Divergence ..55
Adding a Parallel Divergence..57
Adding a Library Step ...58
Building the Step Library ..58
Adding a Step from the Library...60
Bitmap Library Editor ...60
Adding Program Comments ..64

Editing Program Elements ..65

CHAPTER 3: SFC Program Elements.............67
Elements of the SFC ...68
Program Flow..68
SFC Extensions to IEC 61131-3 ...69
Step..71

Parameters ...72
Code...73
Using Library Steps ...73
Using the SFC and Step System Variables ..73

Transition ..74
Evaluation..75
Parameters ...75

Macro Step ..77
Parameters ...78
Code...79
Macro Step Usage Rules ...79

Action..80
Editing the Action RLL...81
Parameters ...81
Choosing Action Name ...83
Choosing Action Qualifier ..83
Setting Action Duration...85
Choosing the Program Label ...86
Designing a Safe State...86

Jump/Label: Program Flow...87
Using a Jump with a Label ..87
Using an SFC Transition Coil with a Label88
Parameters - Edit Jump and Edit Label Dialog Boxes88

Loop: Program Flow ...89
Select Divergence: Program Flow ..90
Parallel Divergence: Program Flow..91

Rules for Creating Parallel Divergences ...91

CHAPTER 4: Structured Text Program
Elements ..93

Elements of Structured Text..94
Wonderware InControl Language Editors User’s Guide

Contents 5
STL Extensions to IEC 61131-3 .. 95
Creating an STL Program .. 96
Using the Structured Text Tool and Menu Bars 97
STL Editing Tips .. 99
Entering Program Code.. 100
Expressions... 101

Operators .. 101
Data Types .. 102

Statement Types ... 102
Assignment... 103
BREAK .. 104
CASE.. 104
Comment ... 105
EXIT .. 106
FOR .. 107
Function/Procedure Call... 108
IF ... 109
INCLUDE ...110
REPEAT ..110
RETURN...111
SCAN ..111
WHILE..112
#pragma...113
InControl Functions and Function Blocks ..114

APPENDIX A: RLL Example Program...........119
Developing an RLL Program ... 120

Creating a New RLL Program.. 120
Adding a Contact .. 121
Adding a Coil.. 122

Running the RLL Program... 124
Monitoring Variables in the RLL Program .. 125
Developing a Function ... 127

Creating a New Function.. 127
Specifying Return Value Data Type ... 128
Creating Function Parameters .. 129
Entering Function Code.. 131
Creating the Calling Program ... 132
Creating Variables for the Calling Program 133

Calling and Running the Function ... 135
Downloading the Project .. 135
Adding Variables to the Watch Window... 136
Setting the Project to Run Mode... 137
Wonderware InControl Language Editors User’s Guide

6 Contents
APPENDIX B: SFC Example Program139
Developing an SFC Program ..140

Creating a New SFC Program ...140
Adding a Step ..141
Entering Code for the Step ..142
Creating Variables for the SFC Program...143
Adding a Second Step ...144
Adding a Transition ...145
Alternative Looping...147

Running the SFC Program ..148
Downloading the SFC Program ..148
Adding Variables to the Watch Window ...149
Single Scanning the SFC Program ..150

APPENDIX C: STL Example Program...........153
Developing a Structured Text Program...154

Creating a New STL Program ...154
Entering STL Code..154
Creating Variables for the STL Program...155

Running the STL Program ..157
Downloading the Structured Text Program.....................................157
Adding Variables to the Watch Window ...158
Setting the Program to Run Mode...159

Developing a Function Block ...160
Creating a New Function Block Type ...161
Entering Function Block Code ..162
Creating Function Block Parameters...163
Creating the Calling Program..165
Creating Variables for the Calling Program166
Creating the Function Block Instances..168

Calling and Running the Function Block..169
Downloading the Project ...169
Adding Variables to the Watch Window ...170
Setting the Project to Run Mode ...172
Additional Characteristics of Function Blocks................................173

Developing a Function ..173
Creating a New Function...174
Entering Function Code...174
Specifying Return Value Data Type ..176
Creating Function Parameters ...177
Creating the Calling Program..179
Creating Variables for the Calling Program180

Calling and Running the Function ..182
Downloading the Project ...182
Adding Variables to the Watch Window ...183
Setting the Project to Run Mode ...184
Wonderware InControl Language Editors User’s Guide

Contents 7
Additional Characteristics of Functions ... 185

 Index ..187
Wonderware InControl Language Editors User’s Guide

8 Contents
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 9
C H A P T E R 1

Relay Ladder Logic Program
Elements

This chapter introduces the Relay Ladder Logic (RLL) editor and how to use it
to create a new RLL program.

Contents
• Power Flow - Solving Simple Contact/Coil Logic

• Power Flow - Function Blocks

• RLL Extensions to IEC 61131-3

• Creating an RLL Program

• The RLL Tools

• Adding Contacts

• Adding Coils

• Adding Rungs

• Adding OR Branches

• Deleting OR Branches

• Adding Labels and Jump Coils

• Adding SFC Transition Coils

• Adding Functions / Function Blocks

• Adding a Comment
Wonderware InControl Language Editors User’s Guide

10 Chapter 1
Power Flow - Solving Simple Contact/Coil
Logic

The RLL program is composed of two vertical lines (power rails) that are
connected by one or more horizontal lines (the RLL rungs). The left rail
represents the power source, and the right rail represents the sink. The basic
RLL program elements, contacts and coils, are located on the rungs and
represent the actual hardware components (limit switches, solenoid coils,
lights, etc.) and also single-bit internal memory locations.

After the system writes to the physical outputs, it reads physical inputs and
then solves the RLL logic. Power flow, and solving of the logic of the program,
in an RLL program is always from top to bottom, and from left to right.

For more information about the InControl timeline, see "Runtime Engine
Timeline" in the "InControl System Administration" chapter.

In Example 1, shown in the following figure, power flow begins at the left
power rail, and if contact VLV1 is on, power flow continues to contact PMP1.
The three contacts VLV1, PMP1, and AGIT1 are all in series and represent the
logical ANDing of the three contacts. Contact BT1 is in parallel with contacts
VLV1 and PMP1, representing the logical OR of BT1 with VLV1 and PMP1.
If contact BT1 is on, power flow continues to AGIT1, even if VLV1 is not on.
If power flow continues to coil SYS1, then SYS1 turns on the and circuit is
complete to the right power rail.

The logic for Example 1 is the following:
SYS1 := ((VLV1 AND PMP1) OR NOT BT1) AND AGIT1;

Power Flow Example 1

In Example 2, note that coil PMP2 always turns on when contact VLV33 is on,
regardless of the status of coils VLV34 and VLV35.

Power Flow Example 2
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 11
Power Flow - Function Blocks
RLL function blocks are preprogrammed packages that can also be placed on
an RLL rung. They provide a mechanism for solving more complex problems
not easily handled by contacts and coils: math operations, logic functions,
timers, etc. Function block inputs receive power flow from the rung and
transfer power flow to the next element on the rung through their outputs. They
can also read and write data through internal inputs and outputs.

In the figure below, the division function block (DIV) is enabled by its rung
input EN. It receives divisor and dividend data through two internal inputs
(IN1, IN2). The function block writes the quotient to an internal output (OUT)
and transfers power flow to the next program element through its rung output
(ENO).

Power Flow Example 3
Wonderware InControl Language Editors User’s Guide

12 Chapter 1
RLL Extensions to IEC 61131-3
This section describes the enhancements and other extensions to the IEC
61131-3 specification. InControl complies with IEC 61131-3 except where
noted here.

Output Coils

You can place an Output Coil anywhere on a rung, including to the left of an
input coil or within an OR branch. You can place multiple coils on a single
rung, and the status of one coil is not affected by the status of the others. An
Output coil stores the logical result of the logic evaluated up to its location on
the rung.

OR Branches

You can insert an OR branch that contains no logic (a shunt). You can use a
shunt to temporarily disable a section of logic without deleting it from the
program. Used with a contact that turns off power flow to the logic in question,
the shunt maintains power flow across the rest of the rung.

Counter Parameters

The Preset Value and the Current Value parameters used in the counter
function blocks are DINT data types.

Math Function Blocks

The following math function blocks have inputs and outputs that accept any of
the Any_Bit data types, except for the BOOL: ADD, DIV, SUB, MUL, MOD.

Unsupported Functions

InControl does not support the following functions, which are defined in the
IEC 61131-3 specification: LIMIT, MUX, SEL

Unsupported Function Blocks

InControl does not support the following function blocks, which are defined in
the IEC 61131-3 specification: SR, RS, SEMA, EDGE_CHECK, RTC.

Additional Built-In Functions and Function Blocks

InControl provides the following functions and function blocks, which are not
defined in the IEC 61131-3 specification: ARRAY_TO_STRING,
STRING_TO_ARRAY, CLOSEFILE, COPYFILE, DELETEFILE,
NEWFILE, OPENFILE, READFILE, REWINDFILE, WRITEFILE,
MSGWND, ABORT_ALL.
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 13
Creating an RLL Program
After starting InControl, you can create a new RLL program or edit an existing
one.

 To create a new RLL program:

1. On the File menu, click New.

The menu of program types supported by InControl appears.

2. Select RLL Program and click OK. The Save As dialog box appears.

3. Choose a name (up to 31 characters) and directory (project) for the
program and click Save. A new RLL program appears, showing the two
power rails and one rung. The new program appears in the Project
window.

4. Begin adding the program elements.

To edit an existing RLL program:

1. If the Project window is not open, click Project in the View menu. The
Project window appears.

2. Double-click the name of the program to edit.

The RLL editor opens, displaying the selected program.

You can also click Open in the File menu to open an existing program for
editing. When the Open dialog box appears, select the program to open. If a
program is not part of the current project, you can add it.

You can click Files into Project in the Insert menu to add any POU (program,
function, function block, etc.) to a project. In the figure below, the program
TrimLogic, shown in the Insert Files into Project dialog box, is selected and
can be added to Project10. Note that the file itself is not copied or moved when
it is added to another project.

Adding a POU to a Project
Wonderware InControl Language Editors User’s Guide

14 Chapter 1
Note All POUs are inserted under the Programs folder of the Project window.
You must move functions to the Functions folder, function block types to the
Function Block folder, and macros to the Macros folder for the project to
compile correctly.

If you open a project developed under InControl 7.0, you have the option of
converting the files to an InControl 7.1 project. Any macros in that project
appear in the Programs folder after the conversion. You can move these macros
to the Macros folder, but this is not required for the project to compile.
Macros in the Rel. 7.0 project that have been excluded from download and that
are called from another SFC will appear in the Macros folder after the
conversion.

The RLL Tools
This section describes the RLL toolbar and gives some tips for editing a
program.

Using the RLL Tool and Menu Bar
The RLL toolbar displays the tools used to create an RLL program.

RLL Toolbar OPtions

Icon Menu Bar Option Function
n/a Allows you to select program elements.

Contact Adds a contact to the program.

Label Adds a label to the program.

Coil Adds a coil to the program.

Jump Coil Adds a jump coil to the program.

SFC Transition Coil Adds an SFC transition coil to the program.
Only available when an SFC program is being
edited.

Branch Adds an OR branch to the program.

Rung Adds a new rung to the program.

n/a Opens the Block palette.
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 15
Editing Tips
These tips can help as you edit a program.

• This chapter describes how to use these tools based on selections that you
make from the RLL toolbar. You can also make tool choices from the
Insert menu, which is shown in the following figure. To avoid confusion,
only one method is described in this chapter.

When you insert a program element from the menu bar, the element is
inserted at the current location of the cursor within the program. When you
insert a program element using the toolbar, you can move the cursor to the
location in the program where you want to place the element.

• Use the View menu to display those objects that you need to see during an
editing session. For example, if you prefer to add program elements from
the Menu bar, instead of the RLL toolbar, you can hide the RLL toolbar.
Wonderware InControl Language Editors User’s Guide

16 Chapter 1
• During an editing session, you can right-click for a fast display of some of
the editing options that appear in the menu bar.

With the cursor over an RLL element, right-click to display the following
menu:

With the cursor in an editor window, but not over an RLL element, right-
click to display the following menu:

These menu options are described in the "InControl Environment" chapter.

• To print the RLL program, including configuration data for the function
blocks, select Function Block Details on the View menu. Then print the
program.
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 17
Adding Contacts
The contact typically represents a discrete input point, such as a limit switch. A
contact can also represent an internal memory location, and as such, it is
termed a Boolean. The contact can have one of two states: TRUE or FALSE.
You refer to the contact in your program and the object that it represents by its
symbolic name, which you assign in the Symbol Manager. For internal
memory locations, you can assign the same symbolic name to a contact and a
coil, and the output from one rung can serve as an input to another rung.
InControl supports four types of contacts, which are described below.

Open Contact

The normally open contact operates as follows:

• The contact passes power flow if the point that it represents is TRUE.

• The contact does not pass power flow if the point that it represents is
FALSE.

When you add a contact to a rung, you can use the reserved word TRUE or
FALSE for the symbol name. The contact then operates as if it were always
TRUE (on) or always FALSE (off). Do not add the contact as a local or global
symbol.

Closed Contact

The normally closed contact operates as follows:

• The contact passes power flow if the point that it represents is FALSE.

• The contact does not pass power flow if the point that it represents is
TRUE.

 Positive Transition Contact

The positive transition sensing contact operates as follows:

• When the status of the contact is evaluated, the current state of the point it
represents is compared to its state in the previous scan. If the point is
TRUE in the current scan, but was FALSE in the previous scan, the contact
passes power flow. Otherwise, the contact does not pass power flow. If the
point transitions from FALSE to TRUE and back to FALSE again before the
contact is reevaluated, the contact does not pass power flow.

• The contact cannot pass power flow again until the point that it represents
transitions from FALSE to TRUE again.

Negative Transition Contact

The negative transition sensing contact operates as follows:

• When the status of the contact is evaluated, the current state of the point it
represents is compared to its state in the previous scan. If the point is
FALSE in the current scan, but was TRUE in the previous scan, the contact
passes power flow. Otherwise, the contact does not pass power flow. If the
point transitions from TRUE to FALSE and back to TRUE again before the
contact is reevaluated, the contact does not pass power flow.

• The contact cannot pass power flow again until the point that it represents
transitions from TRUE to FALSE again.
Wonderware InControl Language Editors User’s Guide

18 Chapter 1
To add a contact to the program:

1. Click the Contact Tool on the RLL toolbar.

The cursor changes into the contact cursor.

2. Move the cursor to the location on the rung where you want to place the
new contact.

3. Click the left mouse button. The Edit Contact dialog box appears.

Edit Contact Dialog Box

4. If you have already defined the variable names for your system, select the
variable name to represent the contact (heaters_bldg_2 in the figure).

If you have not defined a variable name for this contact, enter a name in
the Contact Symbol field
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 19
5. Select the contact type (Open, Closed, etc.) and click OK.

If the variable is new, the system prompts you to, click Add Local or Add
Global to add the new variable name to the Symbol Manager as a local or
global variable.

If you click OK without adding the symbol to the Symbol Manager, the
editor accepts the name, but you must still add the variable to the Symbol
Manager before the program can compile.

Note You can create a contact that is always TRUE or always FALSE. Enter
either TRUE or FALSE in the Contact Symbol field and then click OK. The
contact then operates as if it were forced TRUE (on) or FALSE (off).

Adding Coils
The coil typically represents a discrete output point, such as a solenoid. A coil
can also represent an internal memory location, and as such, it is termed a
Boolean. You refer to the coil in your program and the object that it represents
by its symbolic name, which you assign in the Symbol Manager. For internal
memory locations, you can assign the same symbolic name to a contact and a
coil, and the output from one rung can serve as an input to another rung. As an
enhancement to IEC 61131-3, you can place multiple coils on a single rung,
and the status of one coil is not affected by the status of the others. A coil stores
the partial Boolean result evaluated to its point on a rung.

InControl supports six types of coils, which are described in the pages that
follow.

Output Coil

The output coil operates as follows:

• The coil sets the point that it represents to TRUE when the coil has power
flow.

• The coil sets the point that it represents to FALSE if the coil does not have
power flow.

Negated Output Coil

The negated output coil operates as follows:

• The coil sets the point that it represents to TRUE when the coil does not
have power flow.

• The coil sets the point that it represents to FALSE if the coil has power
flow.

Set (Latch) Coil

The set (latch) coil operates as follows:
Wonderware InControl Language Editors User’s Guide

20 Chapter 1
• The coil sets the point that it represents to TRUE when the coil has power
flow.

• The point continues to be TRUE (the point is set, or latched) even when
the coil no longer has power flow.

• The point can be set to FALSE by a reset coil.

Reset (Unlatch) Coil

The reset (unlatch) coil operates as follows:

• The coil sets the point that it represents to FALSE when the coil has power
flow.

• The point remains FALSE (the point is reset, or unlatched) even when the
coil no longer has power flow.

• The point can be set to TRUE by a set coil.

Positive Transition Coil

The positive transition sensing coil operates as follows:

• When the status of the coil is evaluated, the state of the power flow into
the coil during the current scan is compared to its state in the previous
scan. If the power flow is TRUE in the current scan, but was FALSE in the
previous scan, the coil pulses, setting the point it represents to TRUE.

• The point remains TRUE, unless it is set to FALSE, for the duration of the
scan of the ladder logic.

• After the coil has pulsed, power flow must be FALSE for at least one scan
before the coil can pulse again.

Negative Transition Coil

The negative transition sensing coil operates as follows:

• When the status of the coil is evaluated, the state of the power flow into
the coil during the current scan is compared to its state in the previous
scan. If the power flow is FALSE in the current scan, but was TRUE in the
previous scan, the coil pulses, setting the point it represents to TRUE.

• The point remains TRUE, unless it is set to FALSE, for the duration of the
scan of the ladder logic.

• After the coil has pulsed, power flow must be TRUE for at least one scan
before the coil can pulse again.

 To add a coil to the program:

1. Click the Coil Tool on the RLL toolbar.

The cursor changes into the coil cursor.
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 21
2. Move the cursor to the location on the rung where you want to place the
new coil.

3. Click the left mouse button. The Edit Coil dialog box appears.

Edit Coil Dialog Box

4. If you have already defined the variable names for your system, click the
variable name to represent the coil (heaters_stat_bldg_2 in the figure).

If you have not defined a variable name for this coil, enter a name in the
Coil Symbol field.

5. Select the coil type (Output, Negated Output, etc.) and click OK.

If the variable is new, the system prompts you to, click Add Local or Add
Global to add the new variable name to the Symbol Manager as a local or
global variable.

If you click OK without adding the symbol to the Symbol Manager, the
editor accepts the name, but you must still add the variable to the Symbol
Manager before the program can compile.

You can place an Output Coil anywhere on a rung, including to the left of an
input coil or within an OR branch. An Output coil stores the logical result of
the logic evaluated up to its location on the rung.
Wonderware InControl Language Editors User’s Guide

22 Chapter 1
Adding Rungs
To add a rung to the program:

1. Click the Rung Tool on the RLL toolbar.

The cursor changes into the Rung Tool cursor.

2. Move the cursor to the location on the left power rail where you want to
insert the new rung.

3. Click the left mouse button. The editor inserts the rung at the specified
location.

Adding OR Branches
To add an OR branch to a rung:

1. Click the OR Branch Tool on the RLL toolbar.

The cursor changes into the OR Branch Tool cursor.
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 23
2. Move the cursor to the location on the rung where you want to insert the
OR branch.

3. Click the left mouse button. The editor inserts the OR at the specified
location.

After inserting the OR branch, you can adjust the contact points as needed.

To move the contact points of an OR branch:

1. Click the Select Tool.

2. Click the contact point that you want to move.
Wonderware InControl Language Editors User’s Guide

24 Chapter 1
3. Drag the contact point to the new location on the rung. The editor
connects the OR branch at the new location on the rung.

To determine where you can move a contact point, place the cursor over the
contact point and double-click. A series of question marks appear to show
valid locations on the rung, as shown in the following figure. This can be very
helpful when OR branches are nested.

Valid Connection Points

Click one of the question marks to return to the normal edit mode. The contact
point that is selected moves to the location of the selected question mark.

As an enhancement to IEC 61131-3, you can insert an OR branch that contains
no logic (a shunt). You can use a shunt to temporarily disable a section of logic
without deleting it from the program. Used with a contact that turns off power
flow to the logic in question, the shunt maintains power flow across the rest of
the rung. This feature is useful for debugging your program. You can also
move a contact point from rung to rung without deleting the logic contained
within the OR branch.

Note If you are editing an RLL rung contained within an SFC RLL
Transition, you cannot add a second rung. For more information about SFCs,
see the "SFC Program Elements" chapter.
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 25
Deleting OR Branches
The operation of the Cut Tool is based on your selecting an object and then
clicking on the Cut Tool to delete the object. To delete the OR branch,
however, follow one of these procedures.

To delete an OR Branch that contains no elements:

1. Click the Select Tool.

2. Place the cursor in the middle of the OR branch and click.

3. Click the Cut Tool to delete the OR branch.

To delete an OR Branch that contains one or more elements:

1. Click the Select Tool.

2. Drag an area that includes the entire OR branch and its connection points.

Selecting the OR Branch

3. Click the Cut Tool to delete the OR branch.
Wonderware InControl Language Editors User’s Guide

26 Chapter 1
Adding Labels and Jump Coils
Use the jump coil and label elements to disable sections of program code
temporarily. You must use the jump coil and label together. A jump coil
without a label causes an error when you compile the program. The jump coil
and label operate as follows:

• When a jump receives power flow, program execution ignores all logic
between the jump and its corresponding label.

• When a jump coil is actively skipping logic, outputs between the jump coil
and the label are not activated.

• All logic between a jump coil and label is executed normally when the
jump coil does not receive power flow.

• Program execution cannot jump backwards to a previous rung.

 To add a label to the program:

1. Click the Label Tool on the RLL toolbar.

The cursor changes into the Label cursor.

2. Move the cursor to the location on the rung where you want to place the
new label.

3. Click the left mouse button. The Edit Rung Label dialog box appears.

Edit Rung Label Dialog Box
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 27
4. Enter a label and click OK. A label name cannot contain any spaces.

The editor inserts the label at the specified location.

Example Label

You must use the jump coil and label together. A jump coil without a label
causes an error when you compile the program.

To add a jump coil to the program:

1. Click the Jump Coil Tool on the RLL toolbar.

The cursor changes into the Jump Coil cursor.

2. Move the cursor to the rung where you want to place the new jump coil.
Wonderware InControl Language Editors User’s Guide

28 Chapter 1
3. Click the left mouse button. The Edit Jump Coil dialog box appears.

Edit Jump Coil Dialog Box

4. Enter a target label and click OK. A target label name cannot contain any
spaces.

The editor inserts the jump coil at the specified location.

Example Jump Coil
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 29
Adding SFC Transition Coils
The SFC transition coil is an RLL program element that you can use only
under specific conditions: in an SFC program, within an Action that is
associated with a Step or a Macro Step. The SFC transition coil, which
executes similarly to the jump coil element, operates as described below.

For more information about using SFCs and Actions, refer to "Action" in the
"SFC Program Elements" chapter.

Using Transition Coils in Non-Stored Actions

• When a transition coil associated with a Step receives power flow, the
remaining code within the Step is aborted. Program execution then jumps
to the Label in the SFC that is specified in the SFC transition coil. No
Steps are stopped other than the associated Step.

• When a transition coil associated with a Macro Step receives power flow,
the child SFC is aborted. Program execution then jumps to the Label in the
parent SFC that is specified in the SFC transition coil.

Using Transition Coils in Stored Actions

• When a transition coil associated with a Step or Macro Step receives
power flow, all active Steps in the SFC, including those in all child SFCs,
are aborted. On the next scan, program execution then jumps to the Label
in the parent SFC that is specified in the SFC transition coil.

• If the stored Action is located within a Macro, all active Steps, including
those in any child SFCs are aborted. However, Steps in the parent SFC,
including the Macro Step, are not affected.

To add an SFC transition coil to the program, you must be editing an Action in
an SFC program. With an Action open for editing, follow these steps.

1. Click the SFC Transition Coil tool on the RLL toolbar.

The cursor changes into the SFC Transition Coil cursor.

2. Move the cursor to the location on the rung where you want to place the
SFC Transition Coil.
Wonderware InControl Language Editors User’s Guide

30 Chapter 1
3. Click the left mouse button. The Edit SFC Transition Coil dialog box
appears.

4. Enter the name of the SFC target and click OK. An SFC target label name
cannot contain any spaces. The editor inserts the SFC Transition Coil at
the specified location.

Adding Functions / Function Blocks
InControl RLL programs support predefined and user-defined functions and
function blocks.

Predefined Functions / Function Blocks
Several predefined functions and function blocks are available for you to use in
an RLL program. You can enable functions and function blocks with inputs
from an RLL rung, have them do operations such as trigonometric, math, logic
functions, bit shift operations, file operations, etc., and then send the results to
an output that feeds into another element on the RLL rung.

The predefined functions and function blocks supported by InControl are listed
in the following table. For information about syntax and operation, see the
InControl Function and Function Block Reference Manual.
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 31
Functions/Procedures by Group

Group Type Description
Bitwise AND Computes the bitwise AND of two

numbers.
NOT Computes the bitwise complement of a

number.
OR Computes the bitwise OR of two numbers.
ROL Rotates the input left by a specified number

of bits.
ROR Rotates the input right by a specified

number of bits.
SHL Shifts the input left by a specified number of

bits.
SHR Shifts the input right by a specified number

of bits
XOR Computes the bitwise Exclusive OR of two

numbers.
Comparison EQ Tests two inputs for equality.

GE Tests if first input is greater than or equal
second input.

GT Tests if first input is greater than second
input.

LE Tests if first input is less than or equal
second input.

LT Tests if first input is less than second input.
NE Tests two inputs for inequality.
Wonderware InControl Language Editors User’s Guide

32 Chapter 1
Conversion ARRAY_TO_
STRING

Takes a byte array input and stores the bytes
as
characters in a string.

BCD_TO_INT Converts a Binary-Coded Decimal (BCD)
input to an
ANY_INT value.

DATE_TO_
REAL

Converts a DATE data type input to an
ANY_REAL
value.

DATE_TO_
STRING

Converts a DATE data type input to a string.

INT_TO_BCD Converts an integer to the equivalent
Binary-Coded
Decimal (BCD) representation of the value.

INT_TO_REAL Converts an ANY_INT input to an
ANY_REAL value.

INT_TO_
STRING

Converts an ANY_INT input to a string.

REAL_TO_
DATE

Converts an ANY_REAL input to a
DATEvalue.

REAL_TO_INT Converts an ANY_REAL input to an
ANY_INT value.

REAL_TO_
STRING

Converts an ANY_REAL input to a string.

REAL_TO_
TIME

Converts an ANY_REAL input to a
TIMEvalue.

STRING_TO_
ARRAY

Takes a string input and stores the
characters of the string in a byte array.

STRING_TO_
DATE

Converts an input string to a DATE value.

STRING_TO_
INT

Converts an input string to an ANY_INT
value.

STRING_TO_
REAL

Converts a string input to an ANY_REAL
value.

STRING_TO_
TIME

Converts a string input to a TIME value.

TIME_TO_
REAL

Converts a TIME input to an ANY_REAL
value.

TIME_TO_
STRING

Converts a TIME input to a string.

Counter CTD Counts events by decrementing by one.
CTU Counts events by incrementing by one.
CTUD Counts events up or down.

Group Type Description
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 33
File CLOSEFILE Closes a file.
COPYFILE Copies a file.
DELETEFILE Deletes a file.
NEWFILE Creates a new file.
OPENFILE Opens an existing file.
READFILE Reads data from a file.
REWINDFILE Rewinds a file to the beginning.
WRITEFILE Writes data to a file.

Math ABS Computes the absolute value of a value.
ADD Adds two values.
DIV Divides one value by another.
EXPT Raises a value to the power specified by a

second value.
MAX Determines the larger of two values.
MIN Determines the smaller of two values.
MOD Divides one value by another and stores the

remainder.
MOVE Copies data from one location to another.
MUL Multiplies two values.
NEG Negates (inverts) the inputs.
SQRT Computes the square root of a value.
SUB Subtracts one value from another.
TRUNC Removes one or more of the least

significant digits of an ANY_REAL data
type.

String CONCAT Concatenates a string input to the end of
another string.

DELETE Deletes characters from the middle of a
string input.

FIND Searches for one string input within another.
INSERT Inserts a string input into another string.
LEFT Copies the leftmost characters from a string

input.
LEN Stores the length of a string input.
MID Copies characters from the middle of a

string input.
MSGWND Displays a message in the Output Window.
REPLACE Replaces characters in a string input with

another string input.
RIGHT Copies the rightmost characters from a

string input.

Group Type Description
Wonderware InControl Language Editors User’s Guide

34 Chapter 1
Timer TOF Provides off-delay timing of events.
TON Provides on-delay timing of events.
TP Activated by a pulse, provides off-delay

timing of events.
Trig/Log ACOS Computes the arc cosine of a value.

ASIN Computes the arc sine of a value.
ATAN Computes the arc tangent of a value.
COS Computes the cosine of a value.
EXP Computes the natural log exponentiation of

a value.
LN Computes the natural log of a value.
LOG Computes the log (base 10) of a value.
SIN Computes the sine of a value.
TAN Computes the tangent of a value.

Trigger ABORT_ALL Aborts all programs that are running.
F_TRIG Turns on an output when triggered by a

falling edge trigger.
R_TRIG Turns on an output when triggered by a

rising edge trigger.

Group Type Description
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 35
User-Defined Functions / Function Blocks
You can develop a user-defined function or function block in RLL code and
call it from any type of program, RLL, STL, etc. For an example that shows
how to develop a user-defined function, see the "RLL Example Program
Appendix."

Note these guidelines when you develop a function or function block.

• You can define up to seven input or input-output (InOut) parameters. The
editor always adds an eighth input by default, which acts as the EN input.

• You can define up to seven output parameters. The editor always adds an
eighth output by default, which acts as the ENO output.

• If you define a Boolean output parameter, the state of this output
determines the output state of the rung, which contains the function, in the
calling program.

To add a function or function block to the RLL program:

1. If the Block palette is not being displayed, click Block Palette in the View
menu.

The editor displays the Block Palette.

2. Select the specific function or function block that you want to add, such as
an OR Bitwise block.
Wonderware InControl Language Editors User’s Guide

36 Chapter 1
3. Drag the function/function block to the rung.

The dialog box for the block appears. The dialog box for the OR Function
is shown in the following figure as an example.

Example Function Block Dialog Box

4. Fill in the appropriate information for the function or function block.

5. When you have finished filling out the dialog box, click OK. The editor
inserts the block at the specified location.
Wonderware InControl Language Editors User’s Guide

Relay Ladder Logic Program Elements 37
Adding a Comment
You can enter a descriptive comment for each rung in the program. Comments
can be several lines if necessary. They are not downloaded to the runtime
engine.

To enter a comment for a rung:

1. Open an RLL program.

If the Program Comments option has been selected on the View menu,
the text "Rung Comment" appears between every rung.

Entering a Comment Example 1

2. If the text "Rung Comment" is not visible, click Program Comments on
the View menu. The text "Rung Comment" appears between every rung in
the program that does not already have a comment.

3. Double-click the "Rung Comment" that you want to edit. The Program
Comments dialog box appears.
Wonderware InControl Language Editors User’s Guide

38 Chapter 1
4. Enter the comment and click OK. Your comment appears within the
program.

Entering a Comment Example 2
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 39
C H A P T E R 2

Using the SFC Editor

This chapter introduces the Sequential Function Chart (SFC) editor and how to
use it to create a new program and to add elements (Steps, Transitions, Jumps,
Macro Steps, etc.) to it. For details about the elements themselves, refer to the
"SFC Program Elements" chapter.

Contents
• Creating an SFC Program

• The SFC Tools

• Adding Program Elements

• Editing Program Elements
Wonderware InControl Language Editors User’s Guide

40 Chapter 2
Creating an SFC Program
After starting InControl, you can create a new SFC program or edit an existing

one.

To create a new SFC program:

1. On the File menu, click New.

The menu of program types supported by InControl appears.

2. Select SFC Program and click OK. The Save As dialog box appears.

3. Choose a name (up to 31 characters) and directory (project) for the
program and click Save. A new SFC program appears, showing a starting
Step and an end Step.

4. To add program elements, see "Adding Program Elements."

To edit an existing SFC program:

1. If the Project window is not open, click Project on the View menu. The
Project window appears.

2. Double-click the program that you want to edit.

The SFC editor opens, displaying the selected program.

You can also click Open on the File menu to open an existing program for
editing.

When the Open dialog box appears, select the program to open. If a program is
not part of the current project, you can add it.

You can click Files into Project on the Insert menu to add any POU (program,
function, function block, etc.) to a project. In the figure below, the SeamWeld
SFC program, shown in the Insert Files into Project dialog box, is selected
and can be added to Project 55. Note that the file itself is not copied or moved
when it is added to another project.

Adding an SFC POU to a Project
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 41
Note All POUs are inserted under the Programs folder of the Project window.
You must move functions to the Functions folder, function block types to the
Function Block folder, and macros to the Macros folder for the project to
compile correctly.

If you open a project developed under InControl 7.0, you have the option of
converting the files to an InControl 7.1 project. Any macros in that project
appear in the Programs folder after the conversion. You can move these macros
to the Macros folder, but this is not required for the project to compile.
Macros in the Rel. 7.0 project that have been excluded from download and that
are called from another SFC will appear in the Macros folder after the
conversion.

The SFC Tools
This section describes the SFC toolbar and gives some tips for editing a
program.

Using the SFC Tool and Menu Bar
The SFC toolbar displays the tools used to create an SFC program.

The SFC toolbar options are described in the following table.

Icon
Menu bar
Option Function
n/a Allows you to select program elements.

Insert/Step Adds a Step to the program.

Insert/Macro
Step

Adds a Macro Step to the program.

Insert/Action Adds an Action to the program.

o
Insert/Transitio
n

Adds a Transition to the program.

Insert/Label Adds a Label to the program.

Insert/Jump Adds a Jump to the program.

Insert/Loop Adds a Loop to the program.
Wonderware InControl Language Editors User’s Guide

42 Chapter 2
Editing Tips
These tips can help as you edit a program.

• This chapter describes how to use these tools based on selections that you
make from the SFC toolbar. You can also make tool choices from the
Insert menu, which is shown below. To avoid confusion, only one method
is described in this chapter.

When you insert a program element from the menu bar, the element is
inserted at the current location of the cursor within the program. When you
insert a program element using the toolbar, you can move the cursor to the
location in the program where you want to place the element.

• Use the View menu to display those objects that you need to see during an
editing session. For example, if you prefer to add program elements from
the menu bar, instead of the SFC toolbar, you can hide the SFC toolbar.

• During an editing session, you can right-click in the SFC editor window
for a fast display of some of the edit options that appear in the menu bar.

• To print the code used in SFC Steps, select Structured Text in the Edit
Step dialog box for the appropriate Steps. Then print the program.

Insert/Select
Diverge

Adds a Select Divergence to the program.

Insert/Parallel
Diverge

Adds a Parallel Divergence to the program.

Insert/Library
Step

Adds a predefined program Step from the library
to the program.

Insert/Comment Allows you to add program comments to the
program.

Icon
Menu bar
Option Function
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 43
When you enter code used in SFC Steps, you use the same tools and menu
options that are in the STL editor. For more information about the STL editor,
see "Using the Structured Text Editor" chapter.

Adding Program Elements
This section describes how to add SFC program elements using tools on the
SFC toolbar.

Adding a Step
A Step represents a condition in which the behavior of the system follows a set
of rules defined by the Actions and functions associated with the Step. See
"Step" in the "SFC Program Elements" chapter for detailed information about
using steps.

To add a Step to the program:

1. Click the Step Tool on the SFC toolbar. The cursor changes into the Step
cursor.

2. Move the cursor to the location in the program where you want to place
the new Step and click. The Edit Step dialog box appears.

Edit Step Dialog Box
Wonderware InControl Language Editors User’s Guide

44 Chapter 2
3. Enter the appropriate information for displaying the Step in the SFC as
described in "Step" in the "SFC Program Elements" chapter. Then click
OK.

The new Step appears in the program at the location you specified.

4. To enter the Structured Text code for the Step, double-click the Step. A
Structured Text editor window appears.

5. Enter the program code, described in the "Structured Text Language"
chapter.

Note You can also add a Step from the Step library. A Step Template contains
a user-defined code template that does a specific function and an icon that is
appropriate for the function. See "Adding a Library Step."

InControl allows you to protect program code within an SFC Step from
unauthorized changes. Select the Lock Algorithms command in the Edit
menu and assign a password. To lock the SFC code, you must have access to
the Edit Program security task.

For more information about locking SFC algorithms, see "Locking SFC
Algorithms" in the "Setting Up Security" chapter.

Adding a Transition
A Transition represents the condition that causes control to pass from one or
more Steps preceding the Transition to one or more successive Steps that
follow the Transition. See "Transition" the "SFC Program Elements" chapter
for detailed information about using Transitions in the program.

You can choose from two types of Transitions in an SFC program.

• The RLL Transition is based on RLL code.

• The Boolean Transition is based on Boolean logic and Structured Text
Boolean expressions.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 45
Adding RLL Transitions
To add an RLL Transition to the program:

1. If Boolean Transition on the Edit menu is checked, click it to deselect
that option.

2. Click the Transition Tool on the SFC toolbar. The cursor changes into the
Transition cursor.

3. Move the cursor to the location in the program where you want to place
the new Transition and click. The new Transition appears in the program.

4. To enter the RLL code, double-click the Transition. The Select RLL
Transition Logic dialog box appears.

Select RLL Transition Dialog Box

5. Enter a meaningful name for the Transition.

An RLL editor window appears containing an RLL rung.
Wonderware InControl Language Editors User’s Guide

46 Chapter 2
6. Add the RLL code, described in the "RLL Program Elements" chapter.
Note that an SFC Transition can have only one RLL rung.

7. Close the editor window.

To delete an existing RLL transition permanently:

1. Select the Transition in the SFC and click the Cut tool to delete the
Transition.

2. On the Tools menu, click RLL Transition Manager. The RLL
Transition Manager dialog box appears.

3. Select the Transition to delete and click the Delete button. The Transition
is removed from the Transition Manager.

Note You must delete the Transition from both the RLL Transition Manager
and the SFC to remove the Transition code completely from your program.

To rename an existing RLL Transition:

1. On the Tools menu, click RLL Transition Manager. The RLL Transition
Manager dialog box appears.

2. Select the Transition to rename and click the Rename button. The
Transition is renamed.

Note You must rename individual RLL Transitions after making a name
change in the RLL Transition Manager.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 47
Adding Boolean Transitions
To add a Boolean Transition to the program:

1. If Boolean Transition on the Edit menu is not checked, click to select it.

2. Click the Transition Tool on the SFC toolbar. The cursor changes into the
Transition cursor.

3. Move the cursor to the location in the program where you want to place
the new Transition and click. The new Transition appears in the program.

4. To enter the Boolean code, double-click the Transition. The Edit
Transition Logic dialog box appears.

Edit Transition Logic Dialog Box

5. To enter the Boolean code for the Transition, type the code in directly or
click Pick Symbol and select it from the Symbol Manager.

6. Click OK to save your work and close the dialog box.
Wonderware InControl Language Editors User’s Guide

48 Chapter 2
Adding a Macro Step
A Macro Step provides a means of calling another SFC from the currently
executing SFC. See "Macro Step" in the "SFC Program Elements" chapter for
detailed information about using Macro Steps in the program.

To add a Macro Step to the program:

1. Click the Macro Step Tool on the SFC menu bar. The cursor changes into
the Macro Step Tool cursor.

2. Move the cursor to the location in the program where you want to place
the new Macro Step and click. The Edit Macro Step dialog box appears.

Edit Macro Step Dialog Box

3. Enter the information for displaying the Macro Step and for selecting the
macro SFC, described in the "SFC Program Elements" chapter. Then click
OK.

The new Macro Step appears in the program.

4. Double-click the Macro Step to edit the macro SFC.

If you right-click the Macro Step and select Step Properties you can
change the Macro Step name or how it is displayed in the SFC.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 49
Adding an Action
An Action consists of one or more sections of RLL code that are associated
with a Step or a Macro Step. The system executes an Action when its
associated Step becomes active. See "Action" in the "SFC Program Elements"
chapter for detailed information about Actions.

You must create a Step or Macro Step before adding an Action to a program.

Adding New Actions
To add an Action to the program:

1. Click Action Tool on the SFC toolbar. The cursor becomes the Action
Tool cursor.

2. Move the cursor to the location in the program (either on top of a Step or
on top of a Macro Step) where you want to place the new Action and click.
The new Action appears in the program.

3. You can add more than one Action to a Step or Macro Step by placing the
cursor on top of an existing Action.

Step with Multiple Actions

Note To copy an Action to another Step in an SFC, hold down the Ctrl key
and then drag the Action to the destination Step.
Wonderware InControl Language Editors User’s Guide

50 Chapter 2
Editing New Actions
To edit a new Action:

1. Double-click the Action. The Edit Action Association dialog box
appears.

Edit Action Association Dialog Box

2. Enter the information for configuring the Action, described in "Action" in
the "SFC Program Elements" chapter. Then click OK to save your
changes. The system closes the dialog box and then displays an empty
rung of RLL ready for editing.

3. Enter the RLL code, described in the "RLL Program Elements" chapter.

Editing Existing Actions
To edit the RLL of an existing Action:

1. Double-click the right side of the Action as shown below.

The RLL code for the Action appears.

2. Enter the RLL code as described the "RLL Program Elements" chapter.

Editing Parameters of an Existing Action
To edit the configuration parameters of an existing Action:

1. Double-click the left side of the Action as shown below.

The system displays the Edit Action Association dialog box for the
Action.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 51
2. Enter the information for configuring the Action as described in "Action"
in the "SFC Program Elements" chapter. Then click OK to save your
changes.

Deleting an Action
You cannot delete an Action from the Action Manager if there are still
references to the Action in the SFC.

If you delete the last reference to an Action, the system will prompt you to
delete the Action from the Action Manager. If you confirm, the Action is
deleted automatically from the Action Manager.

To delete an existing Action permanently:

1. Select the Action in the SFC and click the Cut tool to delete the Action.

2. On the Tools menu, click Action Manager. The Action Manager dialog
box appears.

3. Select the Action to delete and click the Delete button. The Action is
removed from the Action Manager.

Note You must delete the Action from both the Action Manager and the SFC
to remove the Action code completely from your program. However, it is not
necessary to delete the Action if you do not want it to execute.

Renaming an Action
If you rename an Action from the Action Manager, all references to that Action
are updated to reflect the new name.

To rename an existing Action:

1. On the Tools menu, click Action Manager. The Action Manager dialog
box appears.

2. Select the Action to rename and click the Rename button.

3. Enter the new name.
Wonderware InControl Language Editors User’s Guide

52 Chapter 2
Adding a Jump
A Jump-to-Label combination is available that allows SFC execution to
transfer to any location indicated by a Label element. See "Jump/Label:
Program Flow" in the "SFC Program Elements" chapter for detailed
information about using Jumps and Labels.

To add a Jump to the program:

1. Select or deselect Boolean Transition on the Edit menu to choose the
type of Transitions to use with the Jump: RLL or Boolean.

2. Click Jump Tool on the SFC tool bar. The cursor becomes the Jump Tool
cursor.

3. Move the cursor to the location in the program where you want to place
the new Jump and click. The new Jump and two Transitions appear in the
program.

4. Double-click the arrowhead of the Jump.

Editing the Jump Target

The Edit Jump Target dialog box appears.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 53
5. Enter the label to which the Jump transfers program flow. Labels must
start with an alphabetical character and be followed by any alphanumeric
characters and/or underscore. Labels are not case-sensitive.

6. Edit the two Transitions as described in "Adding a Transition."

Adding a Label
A Jump-to-Label combination is available that allows SFC execution to
transfer to any location indicated by a Label element. See "Jump/Label:
Program Flow" in the "SFC Program Elements" chapter for detailed
information about using Jumps and Labels.

To add a Label to the program:

1. Click the Label Tool on the SFC toolbar. The cursor changes into the
Label Tool cursor.

2. Move the cursor to the location in the program where you want to place
the new Label and click. The new Label appears in the program.

Adding a Label

3. Double-click the Label. The Edit Label dialog box appears.

4. Enter a meaningful label. Labels must start with an alphabetical character
and be followed by any alphanumeric characters and/or underscore.
Labels are not case-sensitive.
Wonderware InControl Language Editors User’s Guide

54 Chapter 2
Adding a Loop
A loop allows the SFC program execution to go back to a preceding location in
the program in order to repeat a series of Steps. See "Loop: Program Flow" in
the "SFC Program Elements" chapter for detailed information about using
Loops.

To add a loop to the program:

1. Select or deselect Boolean Transition on the Edit menu to choose the
type of Transitions to use with the loop: RLL or Boolean.

2. Click Loop Tool on the SFC toolbar. The cursor becomes the Loop Tool
cursor.

3. Move the cursor to the location in the program where you want to place
the lower end of the loop and click. The loop appears in the program.

Adding a Loop 1

4. Drag the loop arrow to the point where the upper end of the loop is to be
located.

Adding a Loop 2

5. Edit the two Transitions as described in "Adding a Transition."
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 55
Adding a Select Divergence
A Select Divergence allows the SFC program execution to follow one of two
or more control paths. See "Select Divergence: Program Flow" in the "SFC
Program Elements" chapter for detailed information about using Divergences.

To add a Select Divergence to the program:

1. Select or deselect Boolean Transition on the Edit menu to choose the
type of Transitions to use with the divergence: RLL or Boolean.

2. Click the Select Diverge Tool on the SFC toolbar. The cursor changes into
the Select Divergence Tool cursor.

3. Move the cursor to the location in the program where you want to place
the Select Divergence and click. The Select Divergence appears in the
program.

Adding a Select Divergence

4. Edit the two Transitions as described in "Adding a Transition."

To add another path to the Select Divergence:

1. Click the top of the Select Divergence.
Wonderware InControl Language Editors User’s Guide

56 Chapter 2
2. Click Select Diverge Tool and place the cursor at the top of the
divergence.

3. Click and another divergence path appears.

To delete one path in a divergence:

• Click the path and click the Cut Tool.

To delete the entire divergence:

1. Click either the top or the bottom of the divergence.

2. Click the Cut Tool.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 57
Adding a Parallel Divergence
A Parallel Divergence allows the SFC program execution to follow two or
more control paths. Execution along each path must be completed for program
execution to proceed beyond the Parallel Divergence. See "Parallel
Divergence: Program Flow" in the "SFC Program Elements" chapter for
detailed information about using Parallel Divergences.

To add a Parallel Divergence to the program:

1. Click Parallel Divergence Tool on the SFC toolbar. The cursor becomes
the Parallel Divergence Tool cursor.

2. Move the cursor to the location in the program where you want to place
the Parallel Divergence and click. The Parallel Divergence appears in the
program.

Adding a Parallel Divergence

To add another path to the Parallel Divergence:

1. Click the top of the Parallel Divergence.

2. Click Parallel Diverge Tool and place the cursor at the top of the
divergence.

3. Click and another divergence path appears.
Wonderware InControl Language Editors User’s Guide

58 Chapter 2
To delete one path in a divergence:

• Click the path and click the Cut Tool.

To delete the entire divergence:

1. Click either the top or the bottom of the divergence.

2. Click the Cut Tool.

Adding a Library Step
A library Step is a program Step containing a code template, which is user-
defined for a specific function, and an icon, which is appropriate for the
function. The Step itself operates like any other Step, based on the program
code that you use in it. InControl provides a library of several icons that can be
used within an SFC. See "Step" in the "SFC Program Elements" chapter for
detailed information about using Steps in the program.

You must create a Step for the library before adding it to a program.

Building the Step Library
To create a new Library Step for the library:

1. On the Tools menu, click Step Library, and then click New Library Step.
The palette of icons appears.

Step Library Palette of Icons

2. Click an icon to represent the Step. The Library Step Title dialog box
appears.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 59
3. Enter a title for the Step and click OK. The Edit Step dialog box appears.

Edit Step Dialog Box

4. Customize the Step:

Enter the Structured Text code.

Enter Step name

Choose how you want to display the Step: icon, Step name, Code, etc.

5. Click OK. The new Step is added to the library, and the palette of icons
appears. Either create a new Step Template or close the palette.

To edit a Step in the library:

1. On the Tools menu, click Step Library, and then click Edit Library Step.
The Edit Library Step window appears.

2. Click the Step to edit.

3. After the Edit Step dialog box appears, make your changes and then click
OK. The changes are added to the Step Template.

4. The Edit Library Step palette of icons appears. Either edit another Step
Template or close the palette.

To delete a Step Template from the library:

1. On the Tools menu, click Step Library, and then click Delete Library
Step. The Delete Library Step window appears.

2. Click the Step to delete. Note that you are not prompted to confirm.

3. The selected Step is removed from the library.
Wonderware InControl Language Editors User’s Guide

60 Chapter 2
4. The Delete Library Step window appears. Either delete another Step or
close the window.

Adding a Step from the Library
You must create a Step for the library before adding it to a program

To add a Step from the library to a program:

1. Click Library Step on the SFC toolbar.

The Select Library Step Tool window appears.

2. Click the appropriate Step. The menu closes and the cursor changes to the
Library Step cursor.

3. Move the cursor to the location in the program where you want to place
the Step and click once. The Edit Step dialog box appears.

4. Enter the appropriate information for displaying the Step in the SFC and
click OK.

Bitmap Library Editor
The Bitmap Library Editor allows you to add bitmaps to the SFC Step or SFC
Macro step.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 61
To add bitmaps to the SFC Step or SFC Macro Step:

1. Click Library Step on the SFC toolbar.

The Select Library Step Tool window appears.

2. Click the appropriate step. The menu closes and the cursor changes to the
Library Step cursor.

3. Move the cursor to the location in the program where you want to place
the Step and click once. The Edit Step dialog box appears.
Wonderware InControl Language Editors User’s Guide

62 Chapter 2
4. Click Bitmap Library Editor. The Bitmap Library Editor dialog box
appears.

5. Click the ellipses to browse for bitmaps. The available bitmaps will be
listed in the left list box.
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 63
6. Click the desired bitmaps, then click Add or click Add All to add bitmaps
in Library Editor.

7. Click Save.

8. Click the Icon radio button. The bitmap added in Bitmap Library Editor is
added in the Attach New Icon window.

9. Select the bitmap or icon to display in the Step or Macro Step.
Wonderware InControl Language Editors User’s Guide

64 Chapter 2
Adding Program Comments
A program comment can consist of any meaningful description that you want
to display adjacent to a program element. You can choose whether the system
displays the comments or hides them.

To add a comment to the program:

1. Click the Comment Tool on the SFC toolbar. The cursor changes into the
Program Comment Tool cursor.

2. Move the cursor to the location in the program where you want to place
the comment and click. The new Comment element appears in the
program.

3. Double-click the Comment element. The Program Comments dialog box
appears.

4. Enter the comment and click OK. The comment appears in the program.

SFC Comment
Wonderware InControl Language Editors User’s Guide

Using the SFC Editor 65
Editing Program Elements
To edit an existing program element:

1. Click the Select Tool.

2. Double-click the element (Step, Transition, label, etc.). The dialog box
appropriate for the element (Edit Step, Select RLL Transition Logic,
Bypass Jump Transition Logic, etc.) appears.

If an element is already selected (highlighted), you can also open the
dialog box for editing by pressing Enter.

3. Make changes in the dialog box as needed.
Wonderware InControl Language Editors User’s Guide

66 Chapter 2
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 67
C H A P T E R 3

SFC Program Elements

This chapter introduces the programming elements that you use in a Sequential
Function Chart.

Contents
• Elements of the SFC

• Program Flow

• SFC Extensions to IEC 61131-3

• Step

• Transition

• Macro Step

• Action

• Jump/Label: Program Flow

• Loop: Program Flow

• Select Divergence: Program Flow

• Parallel Divergence: Program Flow
Wonderware InControl Language Editors User’s Guide

68 Chapter 3
Elements of the SFC
The Sequential Function Chart (SFC) represents an application program as a
series of sequential states or Steps. A Step represents a condition in which the
program execution follows a set of rules defined by the Actions and functions
associated with the Step.

You program a Step in the Structured Text language (IEC-61131 compliant)
described in detail in the "Structured Text Language" chapter.

The flexibility of the SFC language syntax allows you to call another entire
SFC (the child SFC) for execution from within a single Step, termed the Macro
Step. When the child SFC has completed, program control returns to the Macro
Step that made the call.

You can design multiple branches in your SFC. The Select Divergence branch
can consist of two or more paths, and program execution is allowed to follow
only one of the paths. The Parallel Divergence branch also consists of multiple
paths, but program execution proceeds down all the paths.

Program Flow
Program flow moves from top to bottom, as illustrated in the following figure.
The code within each Step is executed, and when it has completed, program
flow moves to the next program element. If the next element is a Step, the code
within that Step is executed. If the next element is a Transition, program flow
continues when the Transition becomes TRUE. A Transition is a Boolean
language or RLL language condition that resolves to a TRUE or FALSE state.

Program Flow Example 1

When program flow reaches the End Step, the mode of the SFC changes from
Run to Complete. The program must be restarted before it can execute again.

In the following example, one Transition follows another. Program flow still
moves from top to bottom, and execution of a program element does not begin
until the preceding element has completed. After the first Transition, T1,
becomes TRUE, the second Transition T2 becomes active. After the second
Transition, T2, becomes TRUE, Step2 becomes active.
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 69
Program Flow Example 2

You can use a Jump-to-Label combination to skip code as your application
requires it. You can also incorporate a Loop to re-execute a section of code.

InControl allows you to execute multiple programs of multiple types. That is,
you can run two RLL programs, for example, at the same time that three SFCs
are running. You can coordinate program execution through global symbols,
which are recognized by all the program types. The system variable, Mode,
which is associated with an individual program, is a local symbol that you can
also use to coordinate program execution.

SFC Extensions to IEC 61131-3
This section describes the enhancements and other extensions to the IEC
61131-3 specification. InControl complies with IEC 61131-3 except where
noted here.

Transitions

Typically, Steps in an SFC are separated with Transitions. InControl allows
you to place a Step immediately before or after another Step. You can also
place one Transition after another, with no Steps between them.

When two Steps are not separated by a Transition, InControl inserts an
invisible TRUE Transition between them. When two Transitions are not
separated by a Step, InControl inserts an invisible empty Step between them.

All functions within all the Steps preceding a Transition must have been
completed before the system evaluates a Transition.

Step Representation

Steps can be represented by a box containing the Step name, the code
programmed within the Step, or by an icon.

Transition Coil

You can use a Transition Coil within the logic of an Action to stop all
associated Steps and transfer control to the associated Label.

Macro Step

You can use the Macro Step to call one SFC for execution from a Step in
another SFC. Program flow transfers to the SFC that was called (the child
SFC). When the child SFC has completed execution, program flow returns to
the parent SFC and resumes after the Macro Step
Wonderware InControl Language Editors User’s Guide

70 Chapter 3
Since you use STL code in an SFC program, the STL enhancements and
extensions to the IEC 61131-3 specification are also listed in this section.
InControl complies with IEC 61131-3 except where noted here.

Parameters

The parameters for Structured Text functions can be listed in any order as long
as the formal parameter names are given as specified by IEC-61131-3.

FOR Statement

You can use the END_FOR_NOWAIT statement to loop back without an I/O
scan.

REPEAT Statement

You can use the END_REPEAT_NOWAIT statement to loop back without an
I/O scan.

SCAN Statement

You can use the SCAN statement to suspend the execution of Structured Text
statements until after the next I/O scan.

WHILE Statement

You can use the END_WHILE_NOWAIT statement to loop back without an
I/O scan.

Statement

You can use the BREAK statement to stop program flow. BREAK is useful for
debugging a program.

Unsupported Functions

InControl does not support the following functions, which are defined in the

IEC 61131-3 specification.

• LIMIT

• MUX

• SEL
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 71
Step
The SFC represents an application program as a series of sequential Steps. A
Step represents a condition in which the behavior of the factory process is
defined by the Structured Text code and the Actions associated with the Step.
While the SFC is being executed, a Step is either active or inactive, and at a
given moment, the state of the factory process is defined by the active Steps
and the values of their internal and output variables. In the figure below, for
example, Step3 is the active Step, and only the code within Step3 is being
executed. You can create SFCs with multiple paths, however, and it is possible
for more than one SFC to be active at a time.

SFC Step

A Step is represented within an SFC as a box containing the Step identifier.
Program flow into and out of the Step is through a vertical line entering the top
of the box and another line exiting from the bottom of the box.

When you create a new SFC, the system automatically generates the first Step,
labeled Start, and the last Step, labeled End. You cannot edit these Steps; they
simply represent the initiation and termination of the SFC.

Typically, you separate Steps in an SFC with Transitions, which are program
elements described in "Transition." As an enhancement to the IEC- 61131
specification, InControl allows you to place a Step immediately before or after
another Step, which implies a TRUE Transition exists between them.

The Structured Text code in a Step is executed one time, top to bottom, when
the Step becomes active. The code is not executed again until the Step becomes
inactive and then active again. This occurs in one scan; however, the presence
of loops, file operations, or SCAN statements can cause the execution to take
more than one scan.

If you want to execute code continually while a Step is active, you must place
it in an Action. An Action is another program element that you can use to
coordinate the execution of code within a Step with other program code. For
more information, see "Action."
Wonderware InControl Language Editors User’s Guide

72 Chapter 3
Parameters
The Step parameters define how the Step is displayed in the program.

To edit the parameters of a Step:

• On the Edit menu, click Step Properties. The Edit Step dialog box
appears. You can also right-click the Step.

Edit Step Dialog Box

Button / Field Description
Step Name Enter a name for the Step.

Click the Step Name radio button to display the Step
name in the SFC.

Structured Text Click the Structured Text radio button to display the
Step code in the SFC. For a long series of commands,
this can enlarge the displayed size of the Step
significantly.

Step Description Click the Step Description radio button to display the
Step description in the SFC.

Edit Description Click Edit Description to enter a description for the
Step.

Width Enter the width in pixels for the Step description.
Icon
(radio button)

Click the Icon radio button to display the Step in the
SFC as an icon.

Icon
(button)

Click the Icon button to display the palette of icons
from which to choose.
Click the icon and enter a title when the system prompts
you.

Remove Click Remove to delete an icon from the Step, if one is
assigned.

Bitmap Library
Editor

Click Bitmap Library Editor to add custom bitmaps to
the palette of icons.
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 73
Code
To enter code in a Step:

1. Double-click the Step. A Structured Text editor window opens.

2. Enter the program code using the Structured Text language.

When you enter code used in SFC Steps, you use the same tools and menu
options that are in the STL editor.

Using Library Steps
A library Step is a program Step containing a code template, which is user-
defined for a specific function, and an icon, which is appropriate for the
function. The Step itself operates like any other Step, based on the program
code that you use in it. InControl provides a library of several icons that can be
used within an SFC.

Access the library by clicking Library Step on the SFC toolbar. After placing
a library Step into an SFC, edit it in the same way as you edit a normal Step.
Since the code is a template, you need to modify the code to suit your
application. You can also make other changes to the Step options, choosing
from the options described in the preceding pages.

For more information about building the Step Library, see "Building the Step
Library" in the "Using the SFC Editor" chapter.

Using the SFC and Step System Variables
For each SFC, InControl creates the DN system variable, which you can use to
help coordinate program execution. The SFC DN variable is TRUE when the
SFC is finished executing. To reference the variable, enter the SFC name
followed by a period and the variable suffix. For example, SFC1.DN refers to
SFC1.

For each SFC Step, InControl creates three system variables:

• The Boolean Step-is-active (X) variable is TRUE when the Step is active
and FALSE when the Step is inactive.

• The Step code is done (DN) variable is TRUE when the code inside the
Step has completed execution.
Wonderware InControl Language Editors User’s Guide

74 Chapter 3
• The Step time (T) variable contains the current elapsed time of the Step in
milliseconds. When a Step is inactive, T contains the total elapsed time of
the Step. T is set to zero when the Step becomes active.

You can use these system variables in any expression, contact or coil instead of
a symbol of the same type. To reference a Step variable within the program,
enter the Step name followed by a period and the variable suffix. For example,
STEP1.X refers to the Step active variable for Step STEP1.

You can add the Step variables to the Watch Window. Use the following
naming format to add a variable to the Watch Window:

<programname>.<Stepname>.<systemvariablename>

Transition
A Transition represents the condition that allows program flow to pass from
one or more Steps preceding the Transition to one or more Steps following the
Transition. When the system evaluates the code comprising a Transition, the
result must be either TRUE or FALSE. In the figure below, for example,
program flow has passed the Boolean Transition and Step2, which follows it,
and is currently at the RLL Transition. Until the RLL Transition evaluates to
TRUE, Step3 cannot execute.

SFC Transition

A Transition is represented, as shown in the preceding figure, as either a
horizontal line with the Boolean code adjacent to it (Boolean Transitions), or a
horizontal line with the name of the RLL output coil contained within a box
(RLL Transitions). Program flow in and out of the Transition is through a
vertical line passing through the horizontal line.

You can define a Transition by either of the following methods:

• A Boolean Transition is a Boolean expression composed of Structured
Text.

• An RLL Transition consists of a single RLL rung with an output coil
having the same name as the Transition itself.

Typically, all Steps are separated by Transitions. As an enhancement to the
IEC-61131 specification, InControl allows you to place a Step immediately
before or after another Step with no Transitions to separate them, or multiple
Transitions between two Steps. No Transition between Steps implies a TRUE
transition; no Step between Transitions implies an empty Step.
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 75
Evaluation
When program flow in an SFC encounters a Transition, evaluation occurs as
follows.

• RLL Transition When power flow on the rung reaches the output coil,
turning it on, the Transition becomes TRUE, and program flow moves to
the next Step.

Boolean Transition When the Boolean expression resolves to TRUE, the
Transition becomes TRUE, allowing program flow to move to the next
Step.

• All functions within all the preceding Steps must have been completed
before the system evaluates a Transition. This is a further enhancement to
the IEC61131 specification, which only requires all preceding Steps to be
active before a Transition can be evaluated.

• If a Transition is FALSE and remains FALSE, the system does not re-
execute the Structured Text code in the Steps that precede the Transition.
Program flow remains at the Transition until the Transition becomes
TRUE.

Parameters
To edit a Transition, double click the Transition. Enter your code as described
below.

RLL Transition For a new Transition, a dialog box appears in which you enter
the Transition name. The system automatically assigns this name to the
variable name of the output coil and opens the RLL editor. An RLL Transition
can have the same name as an Action. However, the RLL logic for Transitions
and for Actions is scoped differently. Therefore, using the same name for a
Transition does not mean that the same RLL logic is executed for the Action,
and vice versa.

Enter the RLL logic through the RLL editor, using the same rules for contacts,
coils, Jumps, etc., described in the "Relay Ladder Logic Program Elements"
chapter. Recall that you can program only one rung for an RLL Transition.

Note You can use any of the InControl predefined functions or function
blocks in an RLL Transition, but not use a user-defined function or function
block.
Wonderware InControl Language Editors User’s Guide

76 Chapter 3
Boolean Transition When you edit the Edit Transition Logic dialog box, you
can either type the Boolean expression directly into the Transition Logic field,
or click the buttons to select operators and symbols. You can access the
Symbol Manager to configure local variables and to see a list of all configured
variables that you can use in the Boolean expression.

SFC Edit Transition Logic Dialog Box
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 77
Macro Step
The Macro Step provides a means of calling one SFC for execution from a Step
in another SFC. Program flow transfers to the SFC that was called (the child
SFC). When the child SFC has completed execution, program flow returns to
the calling (parent) SFC and resumes after the Macro Step.

In the following figure, for example, call_A is the Macro Step in the parent
SFC that calls the child SFC for execution. When the child SFC completes
execution, program flow resumes at Step_2 in the parent SFC.

SFC Macro

Representation of a Macro Step is similar to a Step, multiple boxes containing
an identifier. Program flow into and out of the Macro Step is through a vertical
line entering the top, and another line exiting from the bottom.
Wonderware InControl Language Editors User’s Guide

78 Chapter 3
Parameters
The Macro Step parameters define how the Macro Step is displayed in the
program.

To edit the parameters of a Macro Step:

• On the Edit menu, click Step Properties. The Edit Macro Step dialog
box appears. You can also right-click the Macro Step.

Edit Macro Step Dialog Box

Button / Field Description
Path Name Enter the name of the SFC file containing the program

code for the child SFC. If you are unsure of the file
name, click Browse.

Browse Click to locate the SFC file that contains the program
code for the child SFC.

Macro Step Name Enter a name for the Macro Step.
Click the Macro Step Name radio button to display the
Macro Step name in the SFC.

Icon
(radio button)

Click the Icon radio button to display the Macro Step in
the SFC as an icon.

Icon
(button)

Click the Icon button to display the palette of icons
from which to choose.
Click the icon and enter a title when the system prompts
you.

Remove Click Remove to delete an icon from the Macro Step, if
one is assigned.

Bitmap Library
Editor

Click Bitmap Library Editor to add custom bitmaps to
the palette of icons.
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 79
Code
To specify code for the Macro Step:

1. Double-click the Macro Step. The SFC editor opens and displays the SFC
specified in the Path Name field of the Edit Macro Step dialog box.

2. Enter the child SFC program.

Macro Step Usage Rules
When you design a parent/child SFC combination, follow the rules below.

• A child SFC cannot call the parent SFC or itself.

• You can nest SFCs. That is, one child SFC can call another child SFC.
There is no limit to the nesting level.

• You can call a child SFC from multiple points within a program.

• If you open a project developed under InControl 7.0, you have the option
of converting the files to an InControl 7.1 project. Any macros in that
project appear in the Programs folder after the conversion. You can move
these macros to the Macros folder, but this is not required for the project to
compile. Macros in the Rel. 7.0 project that have been excluded from
download and that are called from another SFC will appear in the Macros
folder after the conversion.
Wonderware InControl Language Editors User’s Guide

80 Chapter 3
Action
An Action consists of a segment of RLL program code that is associated with a
Step or Macro Step. The Action is executed when the Step becomes active,
based on the Action qualifier, which determines when the RLL runs relative to
the activation of the Step. Note that if a Structured Text Label statement is used
within the Step, this can also affect when an Action is executed. If a Label
statement is specified, the Action does not run until the Label statement in the
Step code is encountered.

When an Action terminates, it is executed one more time on the following
scan, with the rung input set to FALSE. This allows timers, counters, and
output coils to reset. If you want additional logic to be executed when the
Action is terminated, use the F_TRIG function block to negate the FALSE
power flow into the rung.

In the example below, the Action called PaintColor consists of several rungs of
RLL that are executed when Step2 becomes active. In this particular example,
the RLL execution does not begin until code execution in the Step encounters
the Label called label_a. The P code is the Action qualifier and means that the
RLL is pulsed, that is, it is executed one time only.

For more information about the qualifiers, see "Choosing Action Name."

SFC Action

You can associate zero or more Actions with a Step and you can associate one
Action with more than one Step by referencing the Action’s name.

The operation of the SFC transition coil, which can be used in an Action, is
described in "SFC Transition Coil" of the "RLL Program Elements" chapter.

The SFC transition coil is useful for implementing emergency shut-down
procedures. See "Designing a Safe State."
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 81
Editing the Action RLL
To edit the RLL code of an Action:

1. Double click the right side of the Action.

The RLL editor window appears.

2. Enter the RLL code as described in the "Using the RLL Editor" chapter.

Parameters
To edit the configuration parameters of an Action:

• Double click the left side of the Action.

The Edit Action Association dialog box appears.

Edit Action Association Dialog Box

Button / Field Description
Action Name Enter the name of the Action.
Action Qualifier Specify an Action qualifier. For more information, see

"Choosing Action Name."
Wonderware InControl Language Editors User’s Guide

82 Chapter 3
Time Duration Specify the time duration for Limited and Delay
qualifiers. Enter either a literal value or a variable name.
You can either enter the time directly, following the
IEC-61131 specification, or click Specify Durationto
fill in the time in a dialog box. For more information,
see "Setting Action Duration."
If the Action qualifier does not actually use the time
duration, any value entered for this parameter is
ignored.
If you enter a variable name, the variable is checked
only once, when the Action is commanded.

Specify Duration Click to access the Define Time Duration dialog box if
you do not want to enter the time directly.
For more information, see "Setting Action Duration."

Program Label Optional. Enter the name of the program label. Labels
in a Macro Step SFC cannot be referenced from the
parent SFC, and the Labels in the parent SFC cannot be
referenced by the macro SFC.
If no Label is in the Step with which the Action is
associated, then the Program Label parameter is
ignored. For more information, see "Choosing the
Program Label."

Button / Field Description
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 83
Choosing Action Name
Use this name if you refer to the Action from another Action, such as resetting
an Action that was stored in another Action. The Action name appears within
the Action as shown in the following figure. An Action can have the same
name as an RLL Transition. However, the RLL logic for Actions and for RLL
Transitions is scoped differently. Therefore, using the same name for an Action
does not mean that the same RLL logic is executed for the RLL Transition, and
vice versa.

Choosing Action Qualifier
Action Qualifiers specify constraints on the execution of the RLL code.
Qualifiers appear within the Action as shown in the figure below.

Choose from the following qualifiers.

• Non Stored (N) When the Step becomes active, the RLL begins running
and stops when the Step becomes inactive.

• Stored (S) When the Step becomes active, the RLL begins to run and
continues until reset by the Reset qualifier.

• Reset (R) You can use the Reset qualifier to terminate the RLL that was
started with any of the other qualifiers.

• Pulsed (P) When the Step becomes active, the RLL is executed once.

• Time Delayed (D) When the Step becomes active, there is a delay* and
then the RLL begins running. The RLL stops when the Step becomes
inactive.

• Time Limited (L) When the Step becomes active, the RLL begins running.
The RLL stops when the time limit* expires or the Step becomes inactive.

• Delayed and Stored (DS) When the Step becomes active, there is a delay*
and then the RLL is stored and begins running. The RLL continues until
reset by the Reset qualifier.

If another Action qualifier resets the RLL during the delay, the reset has no
effect because the RLL has not yet been stored.

If the Step becomes inactive before the delay completes the RLL is never
stored and does not run at all.
Wonderware InControl Language Editors User’s Guide

84 Chapter 3
• Stored and Time Delayed (SD) When the Step becomes active, the RLL is
stored. Then, there is a delay* and the RLL begins running. The RLL
continues until reset by the Reset qualifier. If an Action is reset during a
delay, then the RLL does not execute since it has already been stored.

• Stored and Time Limited (SL) When the Step becomes active the RLL is
stored and then begins to run. After the specified time* the RLL stops
running. A Reset qualifier is required to reset the RLL. Otherwise, without
the reset, the RLL cannot be run again. If the Step becomes inactive, the
RLL will continue to run until the duration times out. To restart the
Action, you must reset it first.

• Pulse Width (PW) Operates the same as the Stored and Time Limited
Qualifier, with this difference: the Action resets automatically after the
duration times out; the Reset qualifier is not necessary to restart the
Action.

* Specify a time in the Time Duration field of the Edit Action
Association dialog box.

If a Step in a child SFC contains one of the following types of stored Actions,
the Action does not automatically stop when the child SFC reaches the
Complete state:

• Stored

• Pulse Width

• Delayed and Stored

• Stored and Time Limited

• Stored and Time Delayed

Consider using a Reset qualifier in an Action of another Step of the child SFC
to stop the stored Action before the child SFC reaches the Complete state.
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 85
Setting Action Duration
You can enter the duration directly or click Specify Duration and enter time
intervals in the dialog box. Enter either a literal value or a variable name. If
you enter a variable name, the variable is checked only once, when the Action
is commanded.

• If you enter the duration directly, follow the IEC 61131-3 specification: a
keyword, e.g., T#, TIME#, t#, time#, followed by time in days, hours,
minutes, seconds, as shown below.

Action Duration Examples

• If you prefer to use the dialog box, enter the time into each field as
appropriate.

The figure below illustrates the same time entered by both methods.

Setting Duration

Note that if you specify a duration for an Action and choose an Action qualifier
that is not time dependent, the duration is ignored.

For an Action that has both a program Label and a duration specified, duration
does not begin timing down until after the Step code encounters the program
Label.

WARNING! If an Action is commanded simultaneously from different Steps,
the program may enter the Fault mode if the Action qualifiers are timed; the
program may execute unpredictably if other qualifier types are used. This has
the potential risk of causing death or injury to personnel and/or damage to
equipment. If you use an Action more than once, design the operation of the
Action qualifiers so that there is no conflicting execution of the Action code.

Time Format Time Format
14.7 days T#14.7d 4 seconds Time#4s
2 minutes 5 seconds T#2m5s 1 day 29 minutes t#1d29m
14 minutes time#14m 1 hour 5 seconds 44

milliseconds
T#1h5s44ms
Wonderware InControl Language Editors User’s Guide

86 Chapter 3
Choosing the Program Label
If you specify the optional program Label, the RLL code does not begin
running until the code in the Step encounters the Label. Note that in the
Structured Text code, the Label must consist of a Label name followed by two
colons, as shown below

Label_A::

If you enter a Label, it appears within the Action as shown below.

Designing a Safe State
In the event that an anomaly occurs during program execution, it is useful to
divert program flow and have program execution stop, go to a safe state or
enter an emergency shut-down procedure, correct an error condition, etc.

A safe-state design consists of two basic sections of code: one section detects
the anomalous condition, and the other section responds with special
processing as needed. You can create a safe-state design by using one or more
Actions to detect the problem condition. Use a transition coil and program
Label to jump to the program code that implements the special processing.

Design RLL code within the Action(s) to detect the anomaly. Attach the
Action(s) with the detection code to all Steps in which you want to identify the
anomalous condition. Using the transition coil allows you to transfer program
execution without creating complex branching graphics.

WARNING! Relying exclusively on program code to handle safety-critical
emergency conditions has the potential risk of death or injury to personnel
and/or damage to equipment. Always install hard-wired mechanical switches,
which are independent of solid-state control devices, that can be used for
emergency shutdowns.
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 87
Jump/Label: Program Flow
Program flow can be diverted to a Label from either a Jump program element
or an SFC transition coil.

Using a Jump with a Label
The Jump program element allows SFC program flow to transfer to any
location indicated by a Label program element. In the following figure, for
example, program flow continues to Step1 when condition W is TRUE. When
condition X is TRUE and condition W is FALSE, program flow jumps to
Label_X, bypassing Step1. When condition Y is TRUE and conditions W and
X are FALSE, program flow jumps to Label_Y, bypassing Step1 and Step2.
When condition Z is TRUE and conditions W, X, and Y are FALSE, program
flow jumps to Label_Z, bypassing Step1, Step2, and Step3.

With multiple branches, logic evaluation takes place from left to right.
Program flow follows the first Transition that evaluates to TRUE. If all
Transitions are FALSE, program flow halts until one Transition becomes
TRUE.

SFC Jump and Label

The Jump is graphically represented by two Transitions: one allows program
flow to continue in the downward direction, and the other allows program flow
to transfer to a Label identifier, which appears below a directed line to the right
and up or down. The Label is graphically represented by a Label identifier and
a horizontal line that identifies the point where program flow resumes.

You can define the Transitions for the Jump by either of the following
methods.

• A Boolean Transition is a Boolean expression composed of Structured
Text.

• An RLL Transition consists of a single RLL rung with an output coil
having the same name as the Transition itself.
Wonderware InControl Language Editors User’s Guide

88 Chapter 3
Using an SFC Transition Coil with a Label
You also divert program flow to a Label from an SFC transition coil used in an
Action. When the transition coil receives power flow, program execution
transfers to the Label identified within the transition coil.

In the following figure, the SFC transition coil called Paint_Gun_Off has
received power flow. The rest of the code in Step 1 is aborted, and program
execution resumes at the Label called Paint_Gun_Off, above Step 6.

SFC Transition Coil and Label

For more information about using the SFC transition coil, see "SFC Transition
Coil" of the "RLL Program Elements" chapter.

Parameters - Edit Jump and Edit Label Dialog
Boxes

Field Description

Jump: Target Label ¹ Specifies Label to which program flow is
transferred.

Label: Label Name ¹ Specifies point in SFC where program flow
resumes.

1 Labels must start with an alphabetical character and be followed by any
alphanumeric characters and/or underscore. Labels are not case sensitive.
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 89
Loop: Program Flow
In an SFC, program flow usually proceeds from top to bottom. The Loop
allows the SFC execution to go back to a previous location in order to repeat a
series of Steps. In the figure below, for example, program flow continues to the
End when condition W is TRUE. When condition X is TRUE and condition W
is FALSE, program flow returns to the point above Step4. When condition Y is
TRUE and conditions W and X are FALSE, program flow returns to the point
above Step3. When condition Z is TRUE and conditions W, X, and Y are
FALSE, program flow returns to the point above Step2.

With multiple branches, logic evaluation takes place from left to right.
Program flow follows the first Transition that evaluates to TRUE. If all
Transitions are FALSE, program flow halts until one Transition becomes
TRUE.

SFC Loop

The Loop is graphically represented by two Transitions: one allows program
flow to continue in the downward direction, and the other allows program flow
to transfer to a point earlier in the program. An arrow at the top of the Loop
shows the point at which program flow resumes.

You can define the Transitions for the Loop by either of the following methods.

• A Boolean Transition is a Boolean expression composed of Structured
Text.

• An RLL Transition consists of a single RLL rung with an output coil
having the same name as the Transition itself.
Wonderware InControl Language Editors User’s Guide

90 Chapter 3
Select Divergence: Program Flow
You can use the Select Divergence to choose from two or more paths for
program flow. Each of the paths within a Select Divergence begins with a
Transition condition that determines which path program flow follows. At
some point in the SFC all the paths within a Select Divergence must converge.
In the following figure, for example, program flow continues to Step2A and
then Step3 when condition W is TRUE. When condition X is TRUE, and
condition W is FALSE, program flow continues to Step2B and then Step3.
When condition Y is TRUE, and conditions W and X are FALSE, program
flow continues to Step2C and then Step3.

With multiple paths, logic evaluation takes place from left to right. Program
flow follows the first Transition that evaluates to TRUE. If all Transitions are
FALSE, program flow halts until one Transition becomes TRUE.

SFC Select Divergence

The Select Divergence is represented as a single path that splits at a horizontal
single line into two or more paths with a Transition on each path. The
convergence is graphically represented as two or more paths that connect at a
horizontal single line.

You can define a Transition by either of the following methods.

• A Boolean Transition is a Boolean expression composed of Structured
Text.

• An RLL Transition consists of a single RLL rung with an output coil
having the same name as the Transition itself.
Wonderware InControl Language Editors User’s Guide

SFC Program Elements 91
Parallel Divergence: Program Flow
You can use the Parallel Divergence to allow multiple control paths to be
executed simultaneously in parallel. This allows you to design Steps that
execute at the same time as other Steps. The Parallel Divergence contains
multiple control paths that are all activated as soon as program flow encounters
the Parallel Divergence. At some point in the SFC all the paths within a
Parallel Divergence must converge. Program flow at the convergence must
wait until all the paths have been executed and all paths have arrived at the
point of simultaneous convergence.

In the figure below, for example, program flow continues to both Step20 and
Step90 simultaneously. When both these Steps have finished execution,
program flow continues to Step2.

SFC Parallel Divergence

The Parallel Divergence is graphically represented as a single path that splits at
a horizontal double line into two or more paths. The convergence is graphically
represented as two or more paths that connect at a horizontal double line.

Rules for Creating Parallel Divergences
Observe the following rules when you create a Parallel Divergence.

• Do not reference the same variable in different paths of a Parallel
Divergence.

• Do not call the same child SFC from Macro Steps in different paths of a
Parallel Divergence.

• To ensure proper convergence, do not use Labels in the following ways:

- To jump outside a Parallel Divergence.

- To jump into a Parallel Divergence.

- To jump to another path within a Parallel Divergence.

WARNING! Improperly constructed jumps used with Parallel Divergences
can cause system lockup, with the potential risk of injury or death to personnel
and/or damage to equipment. Be sure to follow these rules when creating a
Parallel Divergence.

• Design your code carefully if you modify the same variable in different
paths of a Parallel Divergence.
Wonderware InControl Language Editors User’s Guide

92 Chapter 3
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 93
C H A P T E R 4

Structured Text Program
Elements

This chapter introduces the Structured Text Language (STL) editor and how to
use it to create a new STL program.

Contents
• Elements of Structured Text

• STL Extensions to IEC 61131-3

• Creating an STL Program

• Using the Structured Text Tool and Menu Bars

• STL Editing Tips

• Entering Program Code

• Expressions

• Statement Types

• Assignment

• BREAK

• CASE

• Comment

• EXIT

• FOR

• Function/Procedure Call

• IF

• INCLUDE

• REPEAT

• RETURN

• SCAN

• WHILE

• #pragma

• InControl Functions and Function Blocks
Wonderware InControl Language Editors User’s Guide

94 Chapter 4
Elements of Structured Text
The Structured Text programming language is a subset of an IEC-61131
compliant set of text-based instructions. These instructions are designed for the
easy creation of mathematical and logical operations.

• You use Structured Text when you create the application code for an SFC
step, as illustrated below. When the SFC is executed, the Structured Text
code that you incorporate within each step is processed as the step
becomes active.

SFC Step Structured Text

• You can create a stand-alone Structured Text program, as illustrated below.

Standalone STL Program

• Currently, any user-defined functions, procedures, or function blocks must
be written in the Structured Text language.

As you design the program, keep these points in mind:

• The body of the Structured Text program code itself consists of the
"Expressions", "Statement Types", and "Function/Procedure Call"
described in this chapter. Valid Structured Text operators and data types
are described in "Expressions."

• Make any declarations that you need in the program from the Symbol
Manager.

• InControl reserved words have special meaning in the Structured Text
Language. Do not use reserved words as variable names.
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 95
STL Extensions to IEC 61131-3
This section describes the enhancements and other extensions to the IEC
61131-3 specification. InControl complies with IEC 61131-3 except where
noted here.

Parameters

The parameters for Structured Text functions can be listed in any order as long
as the formal parameter names are given as specified by IEC-61131-3.

FOR Statement

You can use the END_FOR_NOWAIT statement to loop back without an I/O
scan.

REPEAT Statement

You can use the END_REPEAT_NOWAIT statement to loop back without an
I/O scan.

SCAN Statement

You can use the SCAN statement to suspend the execution of Structured Text
statements until after the next I/O scan.

WHILE Statement

You can use the END_WHILE_NOWAIT statement to loop back without an
I/O scan.

BREAK Statement

You can use the BREAK statement to stop program flow. BREAK is useful for
debugging a program.

Unsupported Functions

InControl does not support the following functions, which are defined in the
IEC 61131-3 specification: LIMIT, MUX, SEL

Unsupported Function Blocks

InControl does not support the following function blocks, which are defined in
the IEC 61131-3 specification: SR, RS, SEMA, EDGE_CHECK, RTC.

Additional Built-In Functions and Function Blocks

InControl provides the following functions and function blocks, which are not
defined in the IEC 61131-3 specification: ARRAY_TO_STRING,
STRING_TO_ARRAY, CLOSEFILE, COPYFILE, DELETEFILE,
NEWFILE, OPENFILE, READFILE, REWINDFILE, WRITEFILE,
MSGWND, ABORT_ALL.
Wonderware InControl Language Editors User’s Guide

96 Chapter 4
Creating an STL Program
After starting InControl, you can create a new Structured Text program or edit
an existing one.

To create a new Structured Text program:

1. On the File menu, click New.

2. The menu of program types supported by InControl appears.

3. Select Structured Text, choose a program type (Program, Function
Block, Function) and click OK. The Save As dialog box appears.

4. Choose a name (up to 31 characters) and directory (project) for the
program and click Save. A Structured Text edit window appears.

5. To enter the program code, see "Entering Program Code."

To edit an existing Structured Text program:

1. If the Project window is not open, click Project in the View menu. The
Project window appears.

2. Double-click the name of the program to edit.

The Structured Text editor opens, displaying the selected program.

You can also click Open in the File menu to open an existing program for edit.
When the Open dialog box appears, select the program to open. If a program is
not part of the current project, you can add it.

You can click Files into Project in the Insert menu to add any POU (program,
function, function block, etc.) to a project. In the following figure, the program
STL1, shown in the Insert Files into Project dialog box, is selected and can be
added to Project10. Note that the file itself is not copied or moved when it is
added to another project.

Adding a POU to a Project
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 97
Note All POUs are inserted under the Programs folder of the Project window.
You must move functions to the Functions folder, function block types to the
Function Block folder, and macros to the Macros folder for the project to
compile correctly.

If you open a project developed under InControl 7.0, you have the option of
converting the files to an InControl 7.1 project. Any macros in that project
appear in the Programs folder after the conversion.You can move these macros
to the Macros folder, but this is not required for the project to compile.
Macros in the Rel. 7.0 project that have been excluded from download and that
are called from another SFC will appear in the Macros folder after the
conversion.

Using the Structured Text Tool and Menu Bars
The Structured Text toolbar displays the tools used to create a Structured Text
program. The toolbar tools provide shortcuts for entering program elements.
You can also type in Structured Text code directly.

Icon Function Tool Option
Click to insert
preformatted
statement types.

If, If Else, If ElseIf Else, Else, ElseIf, EndIf
For, For (no wait)
Repeat Until, Repeat Until (no wait)
While Do, While Do (no wait)
Case, Case Item
Assignment
Exit
Include
Scan
Break

Click to insert math
operators.

Add +
Subtract, Negate -
Multiply *
Divide /
Modulus MODExponentiation **
Assignment : =

Click to insert
comparison
operators.

Less than <
Less than or equal to ∼
Equal =
Not equal < >
Greater than or equal to ~
Greater than >
Wonderware InControl Language Editors User’s Guide

98 Chapter 4
Click to insert
Boolean operators.

Boolean bitwise AND AND
Boolean bitwise OR OR
Boolean bitwise Exclusive OR XOR
Complement NOT

Click to enter a
symbol.

N/A

Click to enter a
comment.

N/A

n/a Opens the Block palette.

Icon Function Tool Option
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 99
Select functions from the Block Palette. For detailed information about syntax
and operation, see the InControl Function and Function Block Reference
Manual.

STL Editing Tips
These tips can help as you edit a program.

• You can also enter Structured Text code by making selections from the
Insert menu, which is shown in the following figure.

• Use the View menu to display those objects that you need to see during an
editing session. For example, if you prefer to add program elements from
the Menu bar, instead of the STL toolbar, you can hide the STL toolbar.

• During an editing session, you can right-click for a fast display of some of
the edit options that appear in the menu bar.
Wonderware InControl Language Editors User’s Guide

100 Chapter 4
Entering Program Code
You can enter the Structured Text code into the edit window by any of these
methods.

• Type the lines of code directly into the edit window.

• Click selections on the Structured Text toolbar.

• Click Insert on the menu bar and then click the selection.

When you select a block of code and click Comment on the Insert menu, the
code is marked as a comment.

For using symbols in a program, you can choose from these methods:

• If a symbol has not been defined in the Symbol Manager, you can enter a
new symbol in the code and then double-click the symbol name. This
opens the Symbol Properties dialog box, and you can then enter the
configuration data for the symbol. The symbol is then automatically added
to the Symbol Manager.

• You can double-click anywhere within the Structured Text code and the
Symbol Manager opens.

If you then double-click the name of a symbol appearing in the Symbol
Manager, the symbol is inserted in the program at the cursor's location.

If you double-click an InControl Factory Object (FOE) method, the
complete syntax for a function call to the FOE is inserted in the program at
the cursor's location.

• You can double-click any symbol name that appears in the program and
the Symbol Manager opens. If the symbol has already been defined, the
Symbol Manager opens at the correct scoping level with the symbol name
selected.

When you validate a program, lines with errors are marked as shown in the
following figure.

STL Validation Errors

You can check the Output window for error messages that can help you
troubleshoot the program.

STL Validation Error Messages

Note The Structured Text editor opens from an SFC Step automatically when
you double-click the Step.
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 101
Expressions
An expression is defined as a combination of operators (mathematical, logical,
or relational) and operands (constants, variables, literal values, or expressions)
that can be evaluated, yielding a value of a specific data type, e.g., integer, real
number, etc. The operators and data types are described in this section.

Operators
The table below lists the operators that you can use within an expression. The
order of precedence determines the sequence in which they are executed within
the expression. The operator with the highest precedence is applied first,
followed by the operator with the next highest precedence. Operators of equal
precedence are evaluated left to right.

Operator Symbol Precedence
Parenthesis () 1
Function Evaluation Identifier (argument list)

e.g., LN (A), ABS (X)
2

Exponentiation ** 3
Negate - 4
Complement NOT 4
Multiply * 5
Divide / 5
Modulus MOD 5
Add + 6
Subtract - 6

Comparison ¹ <, >, <=, >= 7

Equality = 8
Inequality <> 8
Boolean/Bitwise AND AND 9
Boolean/Bitwise Exclusive OR XOR 10
Boolean/Bitwise OR OR 11
1 In general, it is recommended that you avoid doing a comparison for

equality (or non-equality) with real numbers. If you do this type of
comparison using a constant (literal) value and a real variable, the
variable must be an LREAL data type to help ensure that you receive the
expected result.
Wonderware InControl Language Editors User’s Guide

102 Chapter 4
These symbols have the following functions:

• = Assigns the value of an expression to a variable (variable:=expression).

• ; The semicolon is required to designate the end of a statement.

• [] Brackets are used for array indexing where the array index is an
integer. For example, this sets the first element of an array to the value j+3:
array[1]: = j + 3;

• (* *) designates a comment. For example, (*This is a comment.*)

Data Types
When an expression is evaluated, the result must be one of the data types
supported by InControl. These types are are described in detail in the "Defining
Variables" chapter of the InControl Environment Manual.

Statement Types
The Structured Text statements, which provide for the actual program
execution, consist of the following types:

• Assignment Sets an object to a specified value.
• BREAK Causes the program to stop running if you have enabled

debugging.
• CASE Provides for the conditional execution of a set of

statements.
• Comment Provides for comments to be included within the

program.
• EXIT Terminates iterations before the terminal condition

becomes TRUE.
• FOR Indicates that a statement sequence be executed

repeatedly based on the value of a control variable.
• Function/Procedu

re Call
Calls a function or procedure for execution.

• IF Specifies that one or more statements be executed
conditionally.

• INCLUDE Executes a set of statements contained within an
external file.

• REPEAT Indicates that a statement sequence be executed
repeatedly until a Boolean expression evaluates to
TRUE.

• RETURN Used in a function, procedure or a function block to
cause program flow to resume in the POU that made the
function call.

• SCAN Causes Structured Text execution to be suspended while
an I/O scan is done.
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 103
In the statement syntax descriptions that follow, the angled brackets < >
indicate items for which you substitute a value. Square brackets [] indicate
items that are optional in the statement. Items that you must type in exactly
appear in
typewriter font.

Assignment
Use the assignment statement to replace the value of an object with the result
of the evaluated expression. The format for the assignment statement is the
following:
<object> := <expression>;

where <object> is a variable, array element, etc., and <expression> is a single
value or expression.

Moving structures and arrays is possible although this type of operation may
be lengthy, depending on the size of the structure or array.

To move a structure (Structure1:=Structure2), the size and data types of the
structure members must match exactly. No data type conversion is supported
for complex moves.

To move an array (Array1:=Array2), the size and data types of the array
elements must match exactly. Each element of Array2 is moved to a
corresponding element in Array1.

The following examples are Boolean assignment statements. Boolitem1 :=
TRUE; Boolitem2 := (val <= 75);

The following example sets an element in an array to the value resulting from
the evaluation of a real number expression.

RealArray[13] := (rla / rlb)* 13.41574;

The following example sets a string variable to the value of a string. Be sure to
enclose the string in single quotation marks.

String_Val := ‘This is a string literal’;

The following example assigns a value to the process variable for the PID

InControl factory object (FOE) named BoilerTempControl.
BoilerTempControl.PV := 500.0;

• WHILE Indicates that a statement sequence be executed
repeatedly until a Boolean expression evaluates to
FALSE.

• #pragma Modifies the features and checking operation of the
compiler.
Wonderware InControl Language Editors User’s Guide

104 Chapter 4
BREAK
The BREAK statement causes program flow to stop and is useful for
debugging a program. To enable BREAK statements used in a program, click
Enable Debug on the Validate Project or Validate Program dialog boxes or
on the Properties dialog box for the program. For Structured Text programs,
consider using the breakpoint instead. See "Using Breakpoints" in the
"Running a Project" chapter of the InControl Environment Manual. The format for
the BREAK statement is the following:
BREAK;

The following is an example of the BREAK statement.
intout := BCD_TO_INT(bcd_in);

BREAK;

Max_num := MAX (num1, num2);

Note The following statements cannot appear on the same line: BREAK,
SCAN, END_FOR, END_FOR_NOWAIT, END_WHILE, and
END_WHILE_NOWAIT.

CASE
Use the CASE statement to design for the execution of a set of statements
based on the value of a variable. The construction of the CASE statement
consists of the following.

• An expression that evaluates to a value of data type ANY_INT.

• A list of statement groups, with each group labeled by one or more
integers or ranges of integers. You can also use an enumeration or a
symbol defined as a constant for the label.

When the label for a set of statements matches the value of the ANY_INT
expression, the statements in that set are executed. If the label consists of more
than one integer (enumeration, constant), or a range, the match can occur with
any of the integers (enumerations, constants) contained in the label. If no
match occurs and you have included an ELSE statement, the statements
following the ELSE are executed. If there is no ELSE statement, no statements
are executed in the CASE statement.

The format for the CASE statement is the following:
CASE <expression> OF

label: BEGIN <statement list> END
label,label,label: BEGIN <statement list> END
label..label: BEGIN <statement list> END

ELSE
<statement list>

END_CASE;

where <expression> evaluates to an ANY_INT data type, label is an ANY_INT
literal value, enumeration or constant symbol, and statement list is any set of
valid Structured Text statements.
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 105
The following example selects a new string to display.
CASE ASelection OF

0: OutputString := 'Dave';
1: OutputString:='Tim';
2,3,4: OutputString:='Steve';
5..9: OutputString:='Alan';

ELSE
OutputString:='Empty';

END_CASE;

In the following example, the label is an enumeration, of type COLORS with
these members: BLUE, GREEN RED, YELLOW.
CASE COLORS OF

COLORS.BLUE: BEGIN OutputString := 'BLUE'; END
COLORS.GREEN: BEGIN OutputString:='GREEN'; END
COLORS.RED: BEGIN OutputString:='RED'; END
COLORS.YELLOW: BEGIN OutputString:='YELLOW' ; END

ELSE
(*Error*)

END_CASE;

Comment
Use the COMMENT statement to incorporate useful annotations into your
program code. The format for a comment is the following:
(* <free-form text> *)

The following is an example of a comment statement.
(* Select a new string to display*)

CASE lSelection OF
0:

(* This selects “Dave” as the output*)
OutputString := 'Dave';

1:

(* This selects “Shiela” as the output*)
OutputString:='Shiela';

END_CASE;

You can also comment more than one line at a time:

(* Set intvarA to 3
Then set intvarB to 4 *)

Note If you embed a comment within a comment, a compiler error occurs.
Wonderware InControl Language Editors User’s Guide

106 Chapter 4
EXIT
Use the EXIT statement to terminate an iterative process, e.g. a FOR or
WHILE statement, before the normal termination of the process. The format
for the statement is the following:
<condition for exiting> EXIT;

where <condition for exiting> is an expression that determines
whether to terminate early.

If you use the EXIT statement within a nested iteration, the exit occurs from
the loop in which the EXIT is located, and program flow resumes after the
statement that normally ends the iteration, e.g., END_FOR, END_WHILE, etc.

The following example shows the operation of the EXIT statement. When the
variable called cancel equals 0, then the variable called tally equals 0; when the
variable called cancel does not equal 0, tally equals 46.
tally:=0;

FOR counta := 1 TO 4 DO
FOR countb := 1 TO 3 DO

FOR countc := 1 TO 2 DO
IF cancel = 0 THEN EXIT; END_IF;
tally := tally + countc;
END_FOR;

END_FOR;
tally := tally + counta;

END_FOR;

Note Typically, well-designed loops do not require EXIT statements. Use
EXIT statements sparingly. To avoid a potentially endless loop condition, be
sure that all conditions for completing any nested iterations are satisfied after
an EXIT is executed.
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 107
FOR
Use the FOR statement to execute a series of statements repeatedly, with the
number of repetitions based on the value of a control variable. Each iteration
changes the value of the control variable (the default is 1), which can be an
expression, and which follows the BY portion of the statement. The control
variable can be positive or negative. The FOR statement checks the control
variable before each iteration and the statements within the FOR/END_FOR
boundary are not executed when the current value of the control variable has
reached (or exceeded) the limit.

The format for the FOR statement is the following:
FOR <INT variable> := <expression> TO <expression> [BY

<expression>]

DO
<statement list>

END_FOR;

where <INT variable> is an ANY_INT data type, <expression> resolves to an
ANY_INT data type, and <statement list> is any set of valid Structured Text
statements.

To help avoid the possibility of designing a loop that does not end, it is
suggested that you not change the value of the loop control variable within the
loop.

The END_FOR statement causes the system to wait for an I/O scan at the end
of every cycle of the FOR loop. As an enhancement to the IEC-61131-3
specification, you can use the END_FOR_NOWAIT statement to loop back
without continuing the other tasks on the timeline (the I/O and other programs
are not scanned). You can use the "EXIT" statement to end a FOR before its
normal termination.

WARNING! If the END_FOR_NOWAIT statement causes an endless loop
condition, the Watchdog Timeout will expire. This causes the runtime engine
service to shut down, stopping all programs, with the potential risk of death or
injury to personnel and/or damage to equipment. Design and test your code to
verify that an endless loop condition does not occur. If you use an EXIT
statement within a nested iteration, be sure that all conditions for completing
the iteration are satisfied to avoid a potentially endless loop condition.
Do not use a TMR variable <TMR name>.Q in the FOR condition section if
you also use the END_FOR_NOWAIT statement. This variable is not
processed until the FOR loop is finished, and the loop cannot finish executing
until the variable is processed.

Note The following statements cannot appear on the same line: BREAK,
SCAN, END_FOR, END_FOR_NOWAIT, END_WHILE, and
END_WHILE_NOWAIT.
Wonderware InControl Language Editors User’s Guide

108 Chapter 4
The following example shows the operation of the FOR statement.

total:=0;

FOR count:= 1 TO 100 DO
total:= total + 1;

END_FOR;

total:=0;

FOR t := 10 TO 1 BY -1 DO
total := total + 5;

END_FOR;

Function/Procedure Call
The Structured Text function or procedure call executes one of the InControl
predefined functions or function blocks. You can also use the function or
procedure call to execute FOE methods and user-defined functions or function
blocks.

A function that returns a value operates as a true function and you use it on the
right side of an Assignment statement. The format for a function call is the
following:
<result>:= <function name> (parameter_1, parameter_2, . .

.);

The following example shows the syntax of the TAN function call.
TrigAnswer := TAN (input);

A function that does not return a value operates like a procedure. The format
for a procedure call is the following:
<procedure name> (parameter_1, parameter_2, . . .) ;

The following example shows the syntax of the OPENFILE procedure:
OPENFILE (FCB:= <fcb>, FILE:= <filename>);

If a parameter is not the correct data type, a validation error occurs.

For more information about designing a user-defined function or function
block, see the "Project Organization and Management" chapter of the InControl
Environment Manual.

All FOEs, which do not have a method scheduled to execute automatically, and
all functions and function blocks enter the Loaded mode when you download
them to the runtime engine. An FOE, function, or function block that is in the
Loaded mode, has been loaded in the runtime engine and runs when called for
execution.
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 109
IF
Use the IF statement to design the execution of a set of statements only when a
Boolean variable or expression is TRUE. The construction of the IF statement
consists of the following.

• A Boolean expression preceded by the IF, and followed by THEN, that
causes a set of statements to execute when it is TRUE.

• A second (optional) Boolean expression preceded by ELSEIF, and
followed by THEN, that causes a second set of statements to execute if the
first set does not execute and the second condition is TRUE.

• A set of statements preceded by ELSE (optional) that is executed if the IF
and ELSEIF statements do not execute.

• An END_IF statement is required to close the IF statement.

• If neither Boolean expression is TRUE and you have included an ELSE
statement, the statements following the ELSE are executed. If there is no
ELSE statement, no statements are executed in the IF construction.

The format for the IF statement is the following:
IF <Boolean expression> THEN

<statement list>

[ELSEIF <Boolean expression> THEN
<statement list>]

[ELSE
<statement list>]

END_IF;

where <Boolean expression> is any expression that evaluates to a Boolean
value, and <statement list> is any set of valid Structured Text statements.

The following is an example of the IF statement usage.

com_value := com_input_BUFF[11];

IF COM_VALUE = 11 THEN
lSelection := lSelection + 1;

ELSEIF COM_VALUE = 10 THEN
lSelection:= lSelection -1;

ELSE
lSelection:= 0;

END_IF;
Wonderware InControl Language Editors User’s Guide

110 Chapter 4
INCLUDE
Use the INCLUDE statement to call an external file and execute a set of
statements contained within the file.

The format for the INCLUDE statement is the following:
INCLUDE ‘ < string > ’;

where <string> specifies the path and file containing the statements to be
executed.

You can use more than one INCLUDE statement if you need to call multiple
files. Program commands can be mixed with the INCLUDE statements.

To simplify code debugging and maintenance, it is suggested that you not use
INCLUDE statements in your programs.

The following is an example of the INCLUDE statement usage.
InCLUDE ‘C:\ST_FILES\STFILE1.TXT’;

REPEAT
Use the REPEAT statement to design the repeated execution of a set of
statements until a Boolean condition becomes TRUE. Statements always
execute at least one time before the Boolean expression is evaluated.

The END_REPEAT statement causes the system to do an I/O scan at the end of
every cycle of the REPEAT loop. As an enhancement to the IEC-61131-3
specification, you can use the END_REPEAT_NOWAIT statement to loop
back without continuing the other tasks on the timeline (the I/O and other
programs are not scanned). You can use the "EXIT" statement to end a
REPEAT before its normal termination.

WARNING! If the END_REPEAT_NOWAIT statement causes an endless
loop condition, the Watchdog Timeout will expire. This causes the runtime
engine service to shut down, stopping all programs, with the potential risk of
death or injury to personnel and/or damage to equipment. Design and test your
code to verify that an endless loop condition does not occur. If you use an
EXIT statement within a nested iteration, be sure all conditions for completing
the iteration are satisfied to avoid a potentially endless loop condition.
Do not use a TMR variable <TMR name>.Q in the REPEAT condition section
if you also use the END_REPEAT_NOWAIT statement. This variable is not
processed until the REPEAT loop is finished, and the loop cannot finish
executing until the variable is processed.

The format for the REPEAT statement is the following:
REPEAT

<statement list>

UNTIL <Boolean expression> END_REPEAT;

where <Boolean expression> is any expression that resolves to a Boolean value,
and <statement list> is any set of valid Structured Text statements.
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 111
Note The following statements cannot appear on the same line: BREAK,
SCAN, END_FOR, END_FOR_NOWAIT, END_WHILE, and
END_WHILE_NOWAIT.

The following is an example of the REPEAT statement usage.
ZZ := 0;

REPEAT
ZZ := ZZ+5;

UNTIL ZZ >= 100 END_REPEAT;

RETURN
Use a RETURN in a function, procedure, or function block to cause program
flow to resume in the POU that called the function, procedure, or function
block for execution.

The format for the RETURN statement is the following:
RETURN;

SCAN
Use the SCAN statement to suspend the execution of Structured Text
statements until after the next I/O scan. The format for the SCAN statement is
the following:

SCAN;

Note The following statements cannot appear on the same line: BREAK,
SCAN, END_FOR, END_FOR_NOWAIT, END_WHILE, and
END_WHILE_NOWAIT.

The following is an example of the SCAN statement usage.
ASelection := ASelection + 1;

SCAN;

IF ASelection >= 3 THEN
ASelection := 0;

ELSEIF ASelection < 0 THEN
ASelection := 2;

END_IF;
Wonderware InControl Language Editors User’s Guide

112 Chapter 4
WHILE
Use the WHILE statement to design the repeated execution of a set of
statements until a Boolean condition becomes FALSE. If the Boolean
condition is initially FALSE, then the statements are not executed at all.

The END_WHILE statement causes the system to do an I/O scan at the end of
every cycle of the WHILE loop. As an enhancement to the IEC-61131-3
specification, you can use the END_WHILE_NOWAIT statement to loop back
without continuing the other tasks on the timeline (the I/O and other programs
are not scanned). You can use the "EXIT" statement to end a WHILE before its
normal termination.

WARNING! If the END_WHILE_NOWAIT statement causes an endless loop
condition, the Watchdog Timeout will expire. This causes the runtime engine
service to shut down, stopping all programs, with the potential risk of death or
injury to personnel and/or damage to equipment. Design and test your code to
verify that an endless loop condition does not occur. If you use an EXIT
statement within a nested iteration, be sure that all conditions for completing
the iteration are satisfied to avoid a potentially endless loop condition.
Do not use a TMR variable <TMR name>.Q in the WHILE condition section if
you also use the END_WHILE_NOWAIT statement. This variable is not
processed until the WHILE loop is finished, and the loop cannot finish
executing until the variable is processed.

The format for the WHILE statement is the following:
WHILE <Boolean expression> DO

<statement list>

END_WHILE;

where <Boolean expression> is any expression that resolves to a Boolean value,
and <statement list> is any set of valid Structured Text statements.

Always place a semicolon after the END_WHILE statement and each of the
statements in the statement lists.

Note The following statements cannot appear on the same line: BREAK,
SCAN, END_FOR, END_FOR_NOWAIT, END_WHILE, and
END_WHILE_NOWAIT.

The END_WHILE statement cannot be used in functions or function blocks.
Use END_WHILE_NOWAIT to complete the WHILE statement.

The following is an example of the WHILE statement usage.
VAL_A := 1;

WHILE (VAL_A <= 100) DO
VAL_A := VAL_A*5;

END_WHILE;
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 113
#pragma
Use the #pragma statement to change the form of the message issued by the
compiler when a program is validated and there are one or more instances of
writing an output value to an I/O symbol that has been defined as an input. The
format for the #pragma statement is the following:
#pragma <parameter>

where <parameter>

can be one of these values: IOWriteError, IOWriteWarn, or IOWriteIgnore.

A #pragma statement must start in the first column, be the only item on the
line, and does not take a semicolon. The #pragma statement affects only the
program in which it is used.

The following is an example of the #pragma statement usage. A warning is
generated if the program includes an instance of writing an output value to an
I/O input.
#pragma IOWriteWarn

The following is another example of the #pragma statement usage. No message
is generated if the program includes an instance of writing an output value to
an I/O input.
#pragma IOWriteIgnore

For information about modifying the compiler messaging system so that the
programs in all projects are affected see "Displaying Compiler Warnings" in
the "InControl System Administration" chapter of the InControl Environment
Manual.

For information about modifying the compiler messaging system so that the
programs in all projects are affected, see "Displaying Compiler Warnings" in
the "InControl System Administration" chapter of the InControl Environment
Manual.
Wonderware InControl Language Editors User’s Guide

114 Chapter 4
InControl Functions and Function Blocks
InControl RLL programs support predefined and user-defined functions and
function blocks.

The predefined functions and function blocks supported by InControl are listed
in the following table. For information about syntax and operation, see the
InControl Function and Function Block Reference Manual.

Functions/Procedures by Group

Group Type Description
Bitwise AND Computes the bitwise AND of two

numbers.
NOT Computes the bitwise complement

of a number.
OR Computes the bitwise OR of two

numbers.
ROL Rotates the input left by a specified

number of bits.
ROR Rotates the input right by a

specified number of bits.
SHL Shifts the input left by a specified

number of bits.
SHR Shifts the input right by a specified

number of bits.
XOR Computes the bitwise Exclusive OR

of two numbers.
Comparison EQ Tests two inputs for equality.

GE Tests if first input is greater than or
equal second input.

GT Tests if first input is greater than
second input.

LE Tests if first input is less than or
equal second input.

LT Tests if first input is less than
second input.

NE Tests two inputs for inequality.
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 115
Conversion ARRAY_TO_STRING Takes a byte array input and stores
the bytes as characters in a string.

BCD_TO_INT Converts a Binary-Coded Decimal
(BCD) input to an ANY_INT value.

DATE_TO_REAL Converts a DATE data type input to
an ANY_REAL value.

DATE_TO_STRING Converts a DATE data type input to
a string.

INT_TO_BCD Converts an integer to the
equivalent Binary-Coded Decimal
(BCD) representation of the value.

INT_TO_REAL Converts an ANY_INT input to an
ANY_REAL value.

INT_TO_STRING Converts an ANY_INT input to a
string.

REAL_TO_DATE Converts an ANY_REAL input to a
DATEvalue.

REAL_TO_INT Converts an ANY_REAL input to
an ANY_INT value.

REAL_TO_STRING Converts an ANY_REAL input to a
string.

REAL_TO_TIME Converts an ANY_REAL input to a
TIMEvalue.

STRING_TO_ARRAY Takes a string input and stores the
characters of the string in a byte
array.

STRING_TO_DATE Converts an input string to a DATE
value.

STRING_TO_INT Converts an input string to an
ANY_INT value.

STRING_TO_REAL Converts a string input to an
ANY_REAL value.

STRING_TO_TIME Converts a string input to a TIME
value.

TIME_TO_REAL Converts a TIME input to an
ANY_REAL value.

TIME_TO_STRING Converts a TIME input to a string.
Counter CTD Counts events by decrementing by

one.
CTU Counts events by incrementing by

one.
CTUD Counts events up or down.

Group Type Description
Wonderware InControl Language Editors User’s Guide

116 Chapter 4
File CLOSEFILE Closes a file.
COPYFILE Copies a file.
DELETEFILE Deletes a file.
NEWFILE Creates a new file.
OPENFILE Opens an existing file.
READFILE Reads data from a file.
REWINDFILE Rewinds a file to the beginning.
WRITEFILE Writes data to a file.

Math ABS Computes the absolute value of a
value.

ADD Adds two values.
DIV Divides one value by another.
EXPT Raises a value to the power

specified by a second value.
MAX Determines the larger of two values.
MIN Determines the smaller of two

values.
MOD Divides one value by another and

stores the remainder.
MOVE Copies data from one location to

another.
MUL Multiplies two values.
NEG Negates (inverts) the inputs.
SQRT Computes the square root of a

value.
SUB Subtracts one value from another.
TRUNC Removes one or more of the least

significant digits of an ANY_REAL
data type.

Group Type Description
Wonderware InControl Language Editors User’s Guide

Structured Text Program Elements 117
String CONCAT Concatenates a string input to the
end of another string.

DELETE Deletes characters from the middle
of a string input.

FIND Searches for one string input within
another.

INSERT Inserts a string input into another
string.

LEFT Copies the leftmost characters from
a string input.

LEN Stores the length of a string input.
MID Copies characters from the middle

of a string input.
MSGWND Displays a message in the Output

Window.
REPLACE Replaces characters in a string input

with another string input.
RIGHT Copies the rightmost characters

from a string input.
Timer TOF Provides off-delay timing of events.

TON Provides on-delay timing of events.
TP Activated by a pulse, provides off-

delay timing of events.
Trig/Log ACOS Computes the arc cosine of a value.

ASIN Computes the arc sine of a value.
ATAN Computes the arc tangent of a

value.
COS Computes the cosine of a value.
EXP Computes the natural log

exponentiation of a value.
LN Computes the natural log of a value.
LOG Computes the log (base 10) of a

value.
SIN Computes the sine of a value.
TAN Computes the tangent of a value.

Trigger ABORT_ALL Aborts all programs that are
running.

F_TRIG Turns on an output when triggered
by a falling edge trigger.

R_TRIG Turns on an output when triggered
by a rising edge trigger.

Group Type Description
Wonderware InControl Language Editors User’s Guide

118 Chapter 4
Wonderware InControl Language Editors User’s Guide

RLL Example Program 119
A P P E N D I X A

RLL Example Program

This appendix presents examples for how to design a simple RLL program.

Contents
• Developing an RLL Program

• Running the RLL Program

• Monitoring Variables in the RLL Program

• Developing a Function

• Calling and Running the Function
Wonderware InControl Language Editors User’s Guide

120 Appendix A
Developing an RLL Program
This section describes how to create a new RLL program.

Creating a New RLL Program
To begin developing an RLL program:

1. On the File menu, click New.

The New dialog box appears.

2. Click RLL Program.

3. Be sure that Program is the selected Program Type. Then click OK.

The Save As dialog box appears.
Wonderware InControl Language Editors User’s Guide

RLL Example Program 121
4. Choose the default or a new name (up to 31 characters) for the program
and click Save. The default extension .rll is appended when the file is
saved in your project.

The RLL editor displays a new RLL file with the two power rails and an empty
rung. To begin editing the program, start by adding a contact. Follow the
procedure "Adding a Contact."

For a detailed description of the RLL editor and toolbar items, see the "Using
the RLL Editor" chapter.

Adding a Contact
To add a contact to the rung:

1. Click Contact Tool on the RLL toolbar.

Note that the RLL toolbar may be docked and in a vertical orientation.

2. Move the cursor over the rung.

3. Click the left mouse button. The Edit Contact dialog box appears.

RLL Example: Edit Contact Dialog Box 1
Wonderware InControl Language Editors User’s Guide

122 Appendix A
4. Enter a name in the Contact Symbol field. Only the alphanumeric
characters and the underscore character are valid. Do not use spaces and
do not begin the name with a number. Symbol names are not case
sensitive. In the figure, all_pumps is the new variable.

RLL Example: Edit Contact Dialog Box 2

5. Click Open to specify the type of contact and then click OK.

6. When the system prompts you, click Add Global to add the new variable
name to the Symbol Manager as a global variable. This allocates an
internal memory location to represent the new contact.

For more information about defining variables, see "Creating a Variable" in the
"Defining Variables" chapter.

Adding a Coil
To add a coil to the rung:

1. Click Coil Tool on the RLL toolbar.

2. Move the cursor to the location on the rung to the right of the contact.
Wonderware InControl Language Editors User’s Guide

RLL Example Program 123
3. Click the left mouse button. The Edit Coil dialog box appears.

RLL Example: Edit Coil Dialog Box 1

4. Because this example uses the same variable for both the contact and the
new coil, it is not necessary to add another variable to the Symbol
Manager. Select all_pumps as the variable name for the coil.

5. Click Negated Output to specify the type of coil. Then click OK. The
new coil, a Negated Output Coil, appears on the rung.

The asterisk by the program name in the window title bar indicates that the
program has not been saved; or when the RLL is executing on the runtime
engine, that this is not the same version because editing changes have been
made.
Wonderware InControl Language Editors User’s Guide

124 Appendix A
6. On the File menu click Save to save your work.

The following figure shows the program after you have entered both program
elements:

RLL Example: New Contact and Coil

To validate, download, and run the program, see "Running the RLL Program."

Running the RLL Program
This section describes how to run the RLL program.

To run the RLL program:

1. On the Runtime menu, click Connect. This connects the Development
environment to the runtime engine.

2. On the Runtime menu, click Run Program. The Run Program dialog
box appears.

RLL Example: Run Program Dialog Box

3. Click OK to restart the runtime engine.

The program is compiled, downloaded to the runtime engine, and begins
running. The runtime highlighting shows each program element as it is
executed.

Note If the program elements are not highlighted, on the View menu, click
Runtime Highlighting.
Wonderware InControl Language Editors User’s Guide

RLL Example Program 125
RLL Example: Running the Program

Verify the processes by checking the Output window at the bottom of the
screen.

Monitoring Variables in the RLL Program
This section describes how to observe the values of the variables in the RLL
program.

To monitor the RLL program variables:

1. If the Watch window is not visible, on the View menu, click Watch/Force
Variables. The Watch window appears.

RLL Example: Watch Window 1
Wonderware InControl Language Editors User’s Guide

126 Appendix A
2. To add the variable all_pumps to the Watch window, click Add Symbol.

The Symbol Manager dialog box appears. Since the all_pumps variable is
global, it appears under the Global category of variables.

RLL Example: Symbol Manager
Wonderware InControl Language Editors User’s Guide

RLL Example Program 127
3. Click the variable name to select it, then click OK.

The variable all_pumps is added to the Watch window, and its value is
updated as its status changes.

RLL Example: Watch Window 2

Add other program elements to the RLL program to become familiar with the
rest of the RLL programming editor.

Developing a Function
This section describes how to create a new function. The following is the
general procedure that you will follow:

Note The figures in this section are based on a new project with no other
programs. If you have already created an RLL program, for example, you may
observe some minor differences in the dialog boxes.

Creating a New Function
To begin developing a function:

1. On the File menu, click New.

The New dialog box appears.

2. Click RLL Program.

3. Click Function to select the Program Type. Then click OK.

The Save As dialog box appears.
Wonderware InControl Language Editors User’s Guide

128 Appendix A
4. Enter a name for the function (up to 31 characters) and click Save.This
example uses calc_addR.rll for the name. The default extension .rll is
appended when the file is saved in your project.

The RLL editor displays a new RLL file ready for editing. To begin
editing the function, see "Entering Function Code."

Specifying Return Value Data Type
You specify the return type for a function in the Symbol Manager.

To specify the return data type for the function:

1. On the Tools menu, click Symbol Manager. The Symbol Manager
appears.

2. Right-click the function and select Properties. The Symbol Properties
dialog box appears.

RLL Function Example: Return Value Properties

3. Select REAL as the data type in the Return Type field and enter an
optional description for the function.

Functions only return simple data types. They cannot return arrays,
structures, or function blocks.

4. Click OK to save your work.
Wonderware InControl Language Editors User’s Guide

RLL Example Program 129
Creating Function Parameters
You define the input and output parameters and variables for a function in the
Symbol Manager. Function variables are local to the function and cannot be
referenced elsewhere in the project, except within the context of the function
call. Within the function, input parameters are read only. Output parameters
must be assigned values through an assignment statement.

To define the parameters for the function:

1. On the Tools menu, click Symbol Manager.

2. Click the function to select it as shown in the following figure.

RLL Function Example: Selecting the Function

3. Click New on the Symbol Manager toolbar.

The Symbol Properties dialog box appears.
Wonderware InControl Language Editors User’s Guide

130 Appendix A
4. Enter addend1 for the name of the first parameter into the Name field.

5. Select REAL as the data type in the Type field.

6. Enter the optional description into the Description field. This example
uses the following text:

First addend.

7. Choose Input in the In/Out field, as shown below.

8. Click Add Local to complete the definition for this parameter.

9. Before closing the Symbol Manager, repeat steps 3-8 to add the other
input parameter used by the example function block. Both are listed in the
table below. Enter them in the order shown.

10. Click Close to close the Symbol Manager.

The parameters used by the function are listed in the following table.

The following figure shows the contents of the Symbol Manager after the two
parameters have been defined. Although it does not matter for this example
function, which only adds two numbers, the order of the parameters in the
Symbol Manager is important. Parameter order is indicated in the Address
field, as shown below.

RLL Function Example: Parameters

If you enter parameters out of order, you can change their order in the Symbol
Manager.

To change the order of parameters:

1. Right-click the parameter.

Name Data Type In/Out Description
Addend1 REAL Input First addend.
Addend2 REAL Input Second addend.
Wonderware InControl Language Editors User’s Guide

RLL Example Program 131
2. Click Decrease Address or Increase Address to change the order of the
parameter in the list.

Entering Function Code
To enter the code for the function, follow the steps below. You can copy the
code from the online manual or help, paste it directly into the editor window,
and avoid typing it in manually.

To enter the example code:

1. Place an Add function on the first rung. Use the variable names shown in
the following figure.

m

RLL Function Example: Entering Code 1

The following figure shows the contents of the RLL editor after the Add
function is entered:

RLL Function Example: Entering Code 2

The asterisk by the program name in the window title bar indicates that the
program has not been saved; or when the program is executing on the
runtime engine, that this is not the same version because editing changes
have been made.

2. On the File menu, click Save.
Wonderware InControl Language Editors User’s Guide

132 Appendix A
The following figure shows the contents of the Symbol Manager after the two
parameters have been defined. Although it does not matter for this example
function, which only adds two numbers, the order of the parameters in the
Symbol Manager is important. Parameter order is indicated in the Address
field, as shown below.

RLL Function Example: Parameters

If you enter parameters out of order, you can change their order in the Symbol
Manager.

To change the order of parameters:

3. Right-click the parameter.

4. Click Decrease Address or Increase Address to change the order of the
parameter in the list.

Creating the Calling Program
A function does not run automatically, but rather must be called by a program.
This section describes how to create an RLL program to call the example
function.

To create an RLL Program:

1. Follow the procedure that you used to create a function, as described in
"Creating a New Function."

On the File menu, click New.

Click RLL Program.

Click Program to select the Program Type. Then click OK.

Enter a name for the program (up to 31 characters) and click Save.This
example uses test_functionR.rll for the name.

The RLL editor displays a new RLL file ready for editing.
Wonderware InControl Language Editors User’s Guide

RLL Example Program 133
2. Open the Function palette and place the new user-defined function
calc_addR on the first rung. Use the variable names shown in the
following figure.

RLL Function Example: Code for Calling Program 1

The following figure shows the contents of the RLL editor after the
Calc_addR user-defined function is entered:

RLL Function Example: Code for Calling Program 2

3. On the File menu, click Save. Do not close the program.

To define the variables used by the calling program, see "Creating
Variables for the Calling Program."

Creating Variables for the Calling Program
This section describes how to define variables for the program that calls the
function.

1. 1. If you have closed the calling program, double-click the program name
to open it.

Note that it is not necessary for the program to be open when you define
its variables. However, when the program is open, any local variables that
you define are associated with the program by default.
Wonderware InControl Language Editors User’s Guide

134 Appendix A
2. Click Symbol Manager on the Tools menu. The Symbol Manager
appears.

3. Click New on the toolbar.

The Symbol Properties dialog box appears.

4. Enter AddResult in the Name field.

5. Click REAL in the Type field.

6. Click Add Local to add the new variable name to the Symbol Manager as
a local variable.
Wonderware InControl Language Editors User’s Guide

RLL Example Program 135
7. Before closing the Symbol Manager, repeat steps 2-6 to add the remaining
variables used by the calling program. All the variables are listed in the
table below. Order does not matter for these variables.

Continue the example by downloading and running the project. See
"Calling and Running the Function."

The variables used by the calling program are listed in the following table.

Calling and Running the Function
This section describes how to run the function. The following is the general
procedure that you will follow:

Note that it is necessary to download and run the project because all the code,
the calling program and the function, must be loaded to the runtime engine.

Downloading the Project
To download the project:

1. On the Runtime menu, click Connect. This connects the Development
environment to the runtime engine. Ignore this step if you already
connected to the runtime engine in order to run any of the other example
programs.

Name Data Type
AddResult REAL
add_in1 REAL
add_in2 REAL
Wonderware InControl Language Editors User’s Guide

136 Appendix A
2. On the Runtime menu, click Download Project. The Download Project
dialog box appears.

RLL Function Example: Downloading the Project

3. Click OK to do a full reload of the runtime engine. The project is
downloaded to the runtime engine and all programs are set to the Pause
mode.

Adding Variables to the Watch Window
To add the program variables to the Watch Window:

1. If the Watch Window is not visible, on the View menu, click Watch/Force
Variables. The Watch window appears.

2. To add the variables to the Watch window, click Add Symbol.
Wonderware InControl Language Editors User’s Guide

RLL Example Program 137
3. The Symbol Manager dialog box appears. The variables that you defined
are displayed in the Symbol Manager.

4. Click the following variable names to select them, and click OK: add_in1,
add_in2, and AddResult. Use the Ctrl and Shift keys to select multiple
items.

RLL Function Example: Selecting Variables for Watch Window

The variables are added to the Watch window.

Setting the Project to Run Mode
To run the project:

1. On the Runtime menu, click Run Project.

2. Click Continue to run the project. This is the default option, even if you
have not run the project before, because the programs were downloaded
and then paused.

3. Note the values for add_in1 and add_in2 are both equal zero.
Wonderware InControl Language Editors User’s Guide

138 Appendix A
4. Double-click the value of add_in1 in the Watch window. The Modify
Value dialog box appears. The default new value to write to the add_in1is
zero.

5. Enter 37.415 and click Write to enter the value in add_in1 to be added.

6. Enter 824.48 for the value for add_in2. The RLL program test_functionR,
which is continually calling calc_addR, stores the result of the addition to
AddResult.

7. Note the result of the addition in AddResult.

RLL Function Example: Monitoring the Variables
Wonderware InControl Language Editors User’s Guide

SFC Example Program 139
A P P E N D I X B

SFC Example Program

This appendix presents examples for how to design an STL program, a
function, and a function block.

Contents
• Developing an SFC Program

• Running the SFC Program
Wonderware InControl Language Editors User’s Guide

140 Appendix B
Developing an SFC Program
This section describes how to create a new SFC program.

Note The figures in this section are based on a new project with no other
programs. If you have already created an RLL program, for example, you may
observe some minor differences in the dialog boxes.

Creating a New SFC Program
To begin developing an SFC program:

1. On the File menu, click New.

The New dialog box appears.

SFC Example: New Dialog Box

2. Click SFC Program.

3. Be sure that Program is the selected Program Type. Then click OK.

The Save As dialog box appears.
Wonderware InControl Language Editors User’s Guide

SFC Example Program 141
4. Choose the default or a new name (up to 31 characters) for the program
and click Save. The default extension .sfc is appended when the file is
saved in your project.

The SFC editor displays a new SFC file with a Start Step and an End. To begin
editing the program, start by adding a Step. See "Adding a Step."

For a detailed description of the SFC editor and toolbar items, see the "Using
the SFC Editor" chapter.

Adding a Step
The SFC Step represents a condition in which the operation of the factory
process is defined by the code contained within the Step. An SFC can consist
of one Step or many Steps of code.

To add a Step to the program:

1. Click Step Tool on the SFC toolbar.

Note that the SFC toolbar may be docked and in a vertical orientation.

2. Move the cursor to the location in the program between the Start and End
Steps.

3. Click the left mouse button. The Edit Step dialog box appears.

SFC Example: Edit Step Dialog Box

4. Click OK to accept the default settings.
Wonderware InControl Language Editors User’s Guide

142 Appendix B
The new Step appears in the program at the location you specified.

Entering Code for the Step
Note You can copy the code from the online manual, paste it directly into the
Step, and avoid typing it in manually.

1. Double-click the new Step. A Structured Text editor window appears.

2. Enter the following lines of code:
vari_a := 50;
vari_b := 10;
vari_c := 0;
WHILE vari_b <> vari_a DO

vari_b := vari_b + vari_a/10;
END_WHILE;

The following figure shows the contents of the Step after the code is
entered:

SFC Example: Code Example 1

3. Close the Step and save when prompted. Do not close the SFC program.

For a description of the operation of the WHILE DO statement, see the
"Structured Text Language" chapter.
Wonderware InControl Language Editors User’s Guide

SFC Example Program 143
Creating Variables for the SFC Program
This section describes how to define variables for the program.

1. If you have closed the SFC program, double-click the program name to
open it.

It is not necessary for the program to be open when you define its
variables. However, when the program is open, any local variables that
you define are associated with the program by default.

2. Click Symbol Manager on the Tools menu. The Symbol Manager
appears.

3. Click New on the toolbar.

SFC Example: Adding a Symbol

The Symbol Properties dialog box appears.
Wonderware InControl Language Editors User’s Guide

144 Appendix B
4. Enter vari_a in the Name field.

5. Click INT in the Type field. To see a list of all the data types, click the
display tool to the right of the field.

6. Give the symbol a meaningful description.

7. Click Add Local to add the new variable name to the Symbol Manager as
a local variable. This allocates an internal memory location to represent
the new variable.

8. Before closing the Symbol Manager, repeat steps 2-5 to add integers
vari_b and vari_c to the Symbol Manager. Define both variables as INT
data types.

9. Click Close to close the Symbol Manager.

For more information about defining variables, see "Creating a Variable" in the
"Defining Variables" chapter.

The following figure shows the contents of the Symbol Manager after all three
variables have been defined. The integer variable called Mode is a system
variable that contains the value of the program mode (Run, Pause, Stop, etc.).

SFC Example: New Symbols

Adding a Second Step
Note You can copy the code from the online manual, paste it directly into the
Step, and avoid typing it in manually.

Using the procedure described on the preceding pages, add a second Step to the
SFC. Use the following line of code:
vari_c := (vari_b + vari_a) * 10;

The following figure shows the contents of the Step after the code is entered:

SFC Example: Code Example 2
Wonderware InControl Language Editors User’s Guide

SFC Example Program 145
The following figure shows the SFC after both Steps have been entered:

SFC Example: Two New Steps

The asterisk by the program name in the window title bar indicates that the
program has not been saved; or when the SFC is executing on the runtime
engine, that this is not the same version because editing changes have been
made.

Adding a Transition
The Transition represents the condition that allows program flow to pass from
one or more Steps preceding the Transition to one or more Steps following the
Transition. Two types of Transitions are available, the Boolean Transition and
the RLL Transition. This example uses Boolean for the Transition logic. In
either case, Transition logic always resolves to either a TRUE or FALSE value.

To add a Boolean Transition to the program:

1. Click Edit in the menu bar. If Boolean Transitions does not have a check
by it, click Boolean Transitions to select it.

2. Click Transition Tool on the SFC toolbar.

The cursor changes into the Transition cursor.

3. Move the cursor to the location in the program between the Steps.

4. Click the left mouse button. The new Transition appears in the program.
Wonderware InControl Language Editors User’s Guide

146 Appendix B
5. Double-click the new Transition. The Edit Transition Logic dialog box
appears.

SFC Example: Transition Code

6. Enter the following code in the Transition Logic field and click OK:
vari_b = vari_a

The following figure shows the completed SFC quickstart example after the
Transition and Steps have been added.

SFC Example: New Transition

On the File menu, click Save to save your work. To validate, download, and
run the program, see "Running the SFC Program." Note that InControl
automatically saves any edit changes when you execute a Validate, Download,
or Run command.
Wonderware InControl Language Editors User’s Guide

SFC Example Program 147
Alternative Looping
You can use a Loop, instead of a WHILE statement to handle the loopback to
Step1. The SFC requires the following changes:

• When you define the variables in the Symbol Manager, assign them initial
values. Set vari_a = 50; vari_b = 10; and vari_c = 0. When you enter the
code for Step1, do not include the assignment statements for these
variables.

• Remove the WHILE statement from Step1.

The alternative code for Step1 consists of the following line:
vari_b := vari_b + vari_a/10;

• Replace the Transition with a Loop. The Loop construction is shown in the
figure below. Double-click the two Loop Transitions to edit them. The
conditions for the Transitions are shown in the following figure.

SFC Example: Alternative Looping

Note This alternative method takes more scans to execute. For more
information see "SFC Execution" in the "InControl System Administration"
chapter.
Wonderware InControl Language Editors User’s Guide

148 Appendix B
Running the SFC Program
This section describes how to run the SFC program. Because of its simple
design, this program is best observed if you single scan it instead of allowing it
to run to completion. This allows you to observe the variables as their values
change. The following is the general procedure that you will follow:

Downloading the SFC Program
To download the SFC program:

1. On the Runtime menu, click Connect. This connects the Development
environment to the runtime engine.

Ignore this step if you have already connected to the runtime engine in
order to run the RLL example program.

2. On the Runtime menu, click Download Program.The Download
Program dialog box appears.

SFC Example: Download Program Dialog Box

3. Click OK to reload the runtime engine. The SFC is downloaded to the
runtime engine and set to the Pause mode.
Wonderware InControl Language Editors User’s Guide

SFC Example Program 149
Adding Variables to the Watch Window
To add the SFC program variables to the Watch Window:

1. If the Watch Window is not visible, on the View menu, click Watch/Force
Variables. The Watch window appears.

SFC Example: Watch Window 1

2. To add the variables to the Watch window, click Add Symbol.

The Symbol Manager dialog box appears.

SFC Example: Symbol Manager 1
Wonderware InControl Language Editors User’s Guide

150 Appendix B
3. Since the SFC variables are local, click the display tool for the Scope field
and select your SFC program.

SFC Example:Selecting Scope

The variables that you defined are displayed in the Symbol Manager. The
two variables (DN and Mode) are SFC system variables.

SFC Example: Selecting Variables

4. Click the variable names to select them, and click OK. Use the Ctrl and
Shift keys to select multiple items. The variables are added to the Watch
window.

SFC Example: Symbol Manager 2

Single Scanning the SFC Program
Because of its simple design, this program is best observed if you single scan it
instead of allowing it to run to completion. This allows you to observe the
variables as their values change.

To single scan the SFC program:

1. If you have not already connected to the runtime engine, on the Runtime
menu, click Connect.
Wonderware InControl Language Editors User’s Guide

SFC Example Program 151
2. On the Runtime menu, click Single Scan Program to cause the SFC to
execute for one scan.

You can also press Shift F8 or click the Single Scan Program tool.

3. As the SFC executes during a scan, observe the values of the variables
change in the Watch Window. The runtime highlighting indicates which
program element is being executed.

SFC Example: Single-Scanning the Program

Note If the program elements are not highlighted, on the View menu,
click Runtime Highlighting.

4. 4. Continue to single scan the program. When the variable vari_c equals
1000 and program flow reaches the End Step, the SFC finishes its
execution and enters a Complete mode.

5. To execute the SFC again, download the SFC again and resume single
stepping it. When the Download Program dialog box appears, you can
click Reload, which avoids compiling the program again.

If you chose to use a Loop in the program, as described in "Alternative
Looping" click Reload Runtime Engine when the Download Program
dialog box appears. Otherwise, the variables are not reinitialized.

Add other SFC program elements to the SFC program to become familiar with
the rest of the SFC programming editor.
Wonderware InControl Language Editors User’s Guide

152 Appendix B
Wonderware InControl Language Editors User’s Guide

STL Example Program 153
A P P E N D I X C

STL Example Program

This appendix presents examples for how to design an STL program, a
function, and a function block.

Contents
• Developing a Structured Text Program

• Running the STL Program

• Developing a Function Block

• Calling and Running the Function Block

• Developing a Function

• Calling and Running the Function
Wonderware InControl Language Editors User’s Guide

154 Appendix C
Developing a Structured Text Program
This section describes how to create a new Structured Text (STL) program.

Note The figures in this section are based on a new project with no other
programs. If you have already created an RLL program, for example, you may
observe some minor differences in the dialog boxes.

Creating a New STL Program
To begin developing a STL program:

1. On the File menu, click New. The New dialog box appears.

2. Click Structured Text Program.

3. Be sure that Program is the selected Program Type. Then click OK.
The Save As dialog box appears.

4. Choose the default or a new name (up to 31 characters) for the program
and click Save. The default extension .stl is appended when the file is
saved in your project.

The STL editor displays a new Structured Text file ready for editing. To
begin editing the program, see "Entering STL Code."

Entering STL Code
You can type Structured Text code directly into the editor window or by
making selections from the Insert menu, which is shown in the following
figure.

STL Example: Selecting Functions

To enter the example code:

Note You can copy the code from the online manual, paste it directly into the
editor window, and avoid typing it in manually. If you created the SFC
example, you can copy the code from the SFC Steps.

1. Type the following lines of code:
Wonderware InControl Language Editors User’s Guide

STL Example Program 155
vari_a := 50;
vari_b := 10;
vari_c := 0;
WHILE vari_b<>vari_a DO

vari_b:=vari_b+vari_a/10;
END_WHILE;
vari_c:=(vari_b+vari_a)*10;

The following figure shows the contents of the Structured Text editor after
the code is entered:

STL Example: Entering Code

The asterisk by the program name in the window title bar indicates that the
program has not been saved; or when the program is executing on the
runtime engine, that this is not the same version because editing changes
have been made.

2. On the File menu, click Save. Do not close the program.

Creating Variables for the STL Program
 This section describes how to define variables for the program.

1. If you have closed the program, double-click the program name to open it.

Note that it is not necessary for the program to be open when you define
its variables. However, when the program is open, any local variables that
you define are associated with the program by default.

2. Click Symbol Manager on the Tools menu. The Symbol Manager
appears.

3. Click New on the toolbar.

STL Example: Adding a Symbol
Wonderware InControl Language Editors User’s Guide

156 Appendix C
The Symbol Properties dialog box appears.

4. Enter vari_a in the Name field.

5. Click INT in the Type field. To see a list of all the data types, click the
display tool to the right of the field.

6. Click Add Local to add the new variable name to the Symbol Manager as
a local variable. This allocates an internal memory location to represent
the new variable.

7. Before closing the Symbol Manager, repeat steps 2-5 to add integers
vari_b and vari_c to the Symbol Manager. Define both variables as INT
data types.

8. Click Close to close the Symbol Manager.

The following figure shows the contents of the Symbol Manager after all three
variables have been defined. The integer variable called Mode is a system
variable that contains the value of the program mode (Run, Pause, Stop, etc.).

STL Example: New Symbols

To validate, download, and run the program, see "Running the STL Program."
Note that InControl automatically saves any edit changes when you execute a
Validate, Download, or Run command.
Wonderware InControl Language Editors User’s Guide

STL Example Program 157
Running the STL Program
This section describes how to run the Structured Text program. The following
is the general procedure that you will follow:

Downloading the Structured Text Program
To download the Structured Text program:

1. On the Runtime menu, click Connect. This connects the Development
environment to the runtime engine. Ignore this step if you already
connected to the runtime engine in order to run the RLL or SFC programs.

2. On the Runtime menu, click Download Program. The Download
Program dialog box appears.

STL Example: Download Program Dialog Box

3. Click OK to reload the runtime engine. The program is downloaded to the
runtime engine and set to the Pause mode.
Wonderware InControl Language Editors User’s Guide

158 Appendix C
Adding Variables to the Watch Window
To add the program variables to the Watch Window:

1. If the Watch Window is not visible, on the View menu, click Watch/Force
Variables. The Watch window appears.

STL Example: Watch Window 1

2. To add the variables to the Watch window, click Add Symbol.

The Symbol Manager dialog box appears.

STL Example: Symbol Manager 1
Wonderware InControl Language Editors User’s Guide

STL Example Program 159
3. Since the variables are local, click the display tool for the Scope field and
select STL1.

STL Example: Selecting Scope

The Structured Text system variable (Mode) and the variables that you
defined are displayed in the Symbol Manager.

STL Example: Selecting Variables

4. Click the variable names to select them, and click OK. Use the Ctrl and
Shift keys to select multiple items. The variables are added to the Watch
window.

STL Example: Symbol Manager 2

Setting the Program to Run Mode
To run the program:

1. On the Runtime menu, click Run Program.

2. Click Continue to run the program. This is the default option, even if you
have not run the program before, because the program was downloaded
and then paused.
Wonderware InControl Language Editors User’s Guide

160 Appendix C
3. As the program runs, observe the values of the variables change in the
Watch Window.

STL Example: Running the Program

Add other Structured Text program elements to the program to become
familiar with the rest of the Structured Text programming editor.

Developing a Function Block
This section describes how to create a new function block. The following is the
general procedure that you will follow:

Note The figures in this section are based on a new project with no other
programs. If you have already created an RLL program, for example, you may
observe some minor differences in the dialog boxes.
Wonderware InControl Language Editors User’s Guide

STL Example Program 161
Creating a New Function Block Type
To begin developing a function block type:

1. On the File menu, click New.

The New dialog box appears.

Function Block Example: New Dialog Box

2. Click Structured Text Program.

3. Click Function Block to select the Program Type. Then click OK. The
Save As dialog box appears.

4. Enter a name for the function block (up to 31 characters) and click
Save.This example uses fbedge.stl for the name. The default extension .stl
is appended when the file is saved in your project.

The Structured Text editor displays a new Structured Text file ready for
editing. To begin editing the function block, see "Entering Function Block
Code."
Wonderware InControl Language Editors User’s Guide

162 Appendix C
Entering Function Block Code
You can type Structured Text code directly into the editor window or by
making selections from the Insert menu, which is shown in the following
figure.

Function Block Example: Selecting Functions

To enter the example code:

Note You can copy the code from the online manual, paste it directly into the
editor window, and avoid typing it in manually.

1. Type the following lines of code:
(*code generates a rising edge trigger*)
edgevar:=inputvar AND NOT tempvar;
tempvar:=inputvar;

The following figure shows the contents of the Structured Text editor after
the code is entered:

Function Block Example: Entering Code

The asterisk by the program name in the window title bar indicates that the
program has not been saved; or when the program is executing on the
runtime engine, that this is not the same version because editing changes
have been made.

2. On the File menu, click Save.

To define the parameters used by the function block, see "Creating
Function Block Parameters."
Wonderware InControl Language Editors User’s Guide

STL Example Program 163
Creating Function Block Parameters
You define the input and output parameters and variables for a function block
type in the Symbol Manager. Function block local variables are local to the
function block instance and cannot be referenced elsewhere in the project.
Within the function block instance, input parameters are read only. Output
parameters must be assigned values through an assignment statement.

To define a parameter or variable for a function block type:

1. On the Tools menu, click Symbol Manager.

2. Click the function block type to select it as shown in the following figure.

Function Block Example: Selecting the Function Block

3. Click New on the Symbol Manager toolbar.

The Symbol Properties dialog box appears.

4. Enter inputvar for the name of the first parameter into the Name field.
Wonderware InControl Language Editors User’s Guide

164 Appendix C
5. Select BOOL as the data type in the Type field.

6. Enter the optional description into the Description field. This example
uses the following text:
Variable to detect if input variable transitions from FALSE to TRUE.

7. Choose Input Parameter in the In/Out field, as shown below.

8. Click Add Local to complete the definition for this parameter.

9. Before closing the Symbol Manager, repeat steps 3-8 to add the output
parameter and local variable used by the example function block. All three
are listed in the table below. Enter them in the order shown.

10. Click Close to close the Symbol Manager.

The Structured Text toolbar options are described in the following table.

The following figure shows the contents of the Symbol Manager after the two
parameters and the local variable have been defined. The order of the
parameters in the Symbol Manager is indicated in the Address field.

Function Block Example: Parameters and Variables

If you enter parameters out of order, you can change their order in the Symbol
Manager.

Name
Data
Type In/Out Description

inputvar BOOL Input Variable to detect if input variable transitions
from FALSE to TRUE.

edgevar BOOL Output Goes TRUE for one scan/execution when the
input variable changes from FALSE to TRUE.

tempvar BOOL Local
Symbol

Internal variable unique to each instance of
the function block to help detect the input's
transition from FALSE to TRUE.
Wonderware InControl Language Editors User’s Guide

STL Example Program 165
To change the order of parameters:

1. Right-click the parameter.

2. Click Decrease Address or Increase Address to change the order of the
parameter in the list.

Creating the Calling Program
A function block does not run automatically, but rather must be called by a
program. This section describes how to create a Structured Text program to call
the example function block.

To create a Structured Text Program:

1. Follow the procedure that you used to create a function block, as described
in "Creating a New Function Block Type."

On the File menu, click New.

Click Structured Text Program.

Click Program to select the Program Type. Then click OK.

Enter a name for the program (up to 31 characters) and click Save.This
example uses test.stl for the name.

The Structured Text editor displays a new Structured Text file ready for
editing.

2. Enter the following code for the program.
fbedge1(inputvar:=in1,edgevar:=edge1);
IF (edge1) THEN

count1:=count1+1;
END_IF;
fbedge2(inputvar:=in2,edgevar:=edge2);
IF (edge2) THEN

count2:=count2+1;
END_IF;

The following figure shows the contents of the Structured Text editor after
the code is entered:

Function Block Example: Code for Calling Program

3. On the File menu, click Save. Do not close the program.
Wonderware InControl Language Editors User’s Guide

166 Appendix C
Creating Variables for the Calling Program
This section describes how to define variables for the program that calls the
function block.

1. If you have closed the calling program, double-click the program name to
open it.

Note that it is not necessary for the program to be open when you define
its variables. However, when the program is open, any local variables that
you define are associated with the program by default.

2. Click Symbol Manager on the Tools menu. The Symbol Manager
appears
Wonderware InControl Language Editors User’s Guide

STL Example Program 167
3. Click New on the toolbar.

The Symbol Properties dialog box appears.

4. Enter edge1 in the Name field.

5. Click BOOL in the Type field.

6. Click Add Local to add the new variable name to the Symbol Manager as
a local variable.

7. Before closing the Symbol Manager, repeat steps 2-6 to add the remaining
variables used by the calling program. All the variables are listed in the
table below. Order does not matter for these variables.

8. Do not close the Symbol Manager. Continue the example by adding two
instances of the function block. See "Creating the Function Block
Instances."

The variables used by the calling program are listed in the following table.

Name Data Type
edge1 BOOL
edge2 BOOL
in1 BOOL
in2 BOOL
count1 INT
count2 INT
Wonderware InControl Language Editors User’s Guide

168 Appendix C
Creating the Function Block Instances
You define an instance of a function block type in the Symbol Manager.

 To define an instance of a function block:

1. If you have already closed the Symbol Manager, on the Tools menu click
Symbol Manager. The Symbol Manager appears.

2. Click the name of the calling program test.stl to select the appropriate
scoping level.

3. Click New on the Symbol Manager toolbar.

The Symbol Properties dialog box appears.

4. Enter the name of the first instance into the Name field. This example uses
fbedge1.

5. Select the function block type fbedge in the Type field.

6. Enter an optional description into the Description field.

7. Since all the remaining properties are defined by the function block type,
click Add Local to complete the definition for the instance.

8. Before closing the Symbol Manager, repeat steps 2-7 to add a second
instance of the function block to the Symbol Manager. Use fbedge2 for the
name.

9. Click Close to close the Symbol Manager.

The following figure shows the contents of the Symbol Manager after the
variables and function block instances have been defined.
Wonderware InControl Language Editors User’s Guide

STL Example Program 169
Function Block Example: Variables and Function Block Instances

Continue the example by downloading and running the project. See "Calling
and Running the Function Block."

Calling and Running the Function Block
This section describes how to run the function block. The following is the
general procedure that you will follow:

Note that it is necessary to download and run the project because all the code,
the calling program and the function block, must be loaded to the runtime
engine.

Downloading the Project
To download the project:

1. On the Runtime menu, click Connect. This connects the Development
environment to the runtime engine. Ignore this step if you already
connected to the runtime engine in order to run any of the other example
programs.
Wonderware InControl Language Editors User’s Guide

170 Appendix C
2. On the Runtime menu, click Download Project. The Download Project
dialog box appears.

Function Block Example: Downloading the Project

3. Click OK to do a full reload of the runtime engine. The project is
downloaded to the runtime engine and all programs are set to the Pause
mode.

Adding Variables to the Watch Window
To add the program variables to the Watch Window:

1. If the Watch Window is not visible, on the View menu, click Watch/Force
Variables. The Watch window appears.

2. To add the variables to the Watch window, click Add Symbol.
Wonderware InControl Language Editors User’s Guide

STL Example Program 171
3. The Symbol Manager dialog box appears. The variables that you defined
are displayed in the Symbol Manager.

4. Click the following variable names to select them, and click OK:

edge1, edge2, in1, in2, count1, and count2. Use the Ctrl and Shift keys to
select multiple items.

Function Block Example: Selecting Variables for Watch Window

The variables are added to the Watch window.
Wonderware InControl Language Editors User’s Guide

172 Appendix C
Setting the Project to Run Mode
To run the project:

1. On the Runtime menu, click Run Project.

2. Click Continue to run the project. This is the default option, even if you
have not run the project before, because the programs were downloaded
and then paused.

3. Note the values for count1 and count2 are both equal zero.

4. Double-click the value of in1 in the Watch window. The Modify Value
dialog box appears. The default new value to write to the in1 is TRUE.

5. Click Write to set in1 to TRUE. Note that count1 is incremented by one.
Note also that count2 remains equal to zero since it is controlled by the
other, independently executing function block instance.

6. Repeat steps 4-5 several times and note that the value of count1 increases.

7. Do the same for in2 and observe that count2 is incremented.

Function Block Example: Monitoring the Variables
Wonderware InControl Language Editors User’s Guide

STL Example Program 173
Additional Characteristics of Function Blocks
The following points characterize the function block.

• A Structured Text program is placed in the project hierarchy under
programs. A function block template is created in the hierarchy, but you
must create an instance in the symbol table.

• Although you can "Save As" programs to make copies of the code, you
must edit the code to point to different variables. Function blocks have
inputs and outputs and you can make many “copies” (instances) and pass
different parameters into the same code.

• A Structured Text program executes every scan (assuming it is a normal
priority program).

• A function block executes whenever it is called from a Structured Text
program, an SFC program, or another function block.

• Because the function block instance is created in the symbol table, you can
treat it like a user-defined data type with associated code.

A simple symbol, such as a Boolean for example, has no code associated
with it. You must change its values elsewhere in the project. A user-
defined symbol allows you to define the variables in the structure, but it
has no code associated with it either.

Developing a Function
This section describes how to create a new function. The following is the
general procedure that you will follow:

Note The figures in this section are based on a new project with no other
programs. If you have already created an RLL program, for example, you may
observe some minor differences in the dialog boxes.
Wonderware InControl Language Editors User’s Guide

174 Appendix C
Creating a New Function
To begin developing a function:

1. On the File menu, click New.

The New dialog box appears.

Function Example: New Dialog Box

2. Click Structured Text Program.

3. Click Function to select the Program Type. Then click OK.

The Save As dialog box appears.

4. Enter a name for the function (up to 31 characters) and click Save.This
example uses calc_add.stl for the name. The default extension .stl is
appended when the file is saved in your project.

The Structured Text editor displays a new Structured Text file ready for
editing. To begin editing the function, see "Entering Function Code."

For a detailed description of the Structured Text editor and toolbar items, see
the "Using the Structured Text Editor" chapter.

Entering Function Code
You can type Structured Text code directly into the editor window or by
making selections from the Insert menu, which is shown in the following
figure.
Wonderware InControl Language Editors User’s Guide

STL Example Program 175
Function Example: Selecting STL Functions

To enter the example code:

Note You can copy the code from the online manual, paste it directly into the
editor window, and avoid typing it in manually.

1. Type the following lines of code:
calc_add:=addend1+addend2;

The following figure shows the contents of the Structured Text editor after
the code is entered:

Function Example: Entering Code

The asterisk by the program name in the window title bar indicates that the
program has not been saved; or when the program is executing on the
runtime engine, that this is not the same version because editing changes
have been made.

2. On the File menu, click Save.

To specify the data type of the return value for the function, see
"Specifying Return Value Data Type."
Wonderware InControl Language Editors User’s Guide

176 Appendix C
Specifying Return Value Data Type
You specify the return type for a function in the Symbol Manager.

To specify the return data type for the function:

1. On the Tools menu, click Symbol Manager. The Symbol Manager
appears.

2. Right-click the function and select Properties. The Symbol Properties
dialog box appears.

Function Example: Return Value Properties

3. Select REAL as the data type in the Return Type field and enter an
optional description for the function.

Functions only return simple data types. They cannot return arrays,
structures, or function blocks.

4. Leave the Execute in Background checkbox clear and click OK to save
your work.

To define the parameters used by the function, see "Creating Function
Parameters."
Wonderware InControl Language Editors User’s Guide

STL Example Program 177
Creating Function Parameters
You define the input and output parameters and variables for a function in the
Symbol Manager. Function variables are local to the function and cannot be
referenced elsewhere in the project, except within the context of the function
call. Within the function, input parameters are read only. Output parameters
must be assigned values through an assignment statement.

To define the parameters for the function:

1. On the Tools menu, click Symbol Manager.

2. Click the function to select it as shown in the following figure.

Function Example: Selecting the Function

3. Click New on the Symbol Manager toolbar.

The Symbol Properties dialog box appears.

4. Enter addend1 for the name of the first parameter into the Name field.
Wonderware InControl Language Editors User’s Guide

178 Appendix C
5. Select REAL as the data type in the Type field.

6. Enter the optional description into the Description field. This example
uses the following text:

First addend.

7. Choose Input Parameter in the In/Out field, as shown below.

8. Click Add Local to complete the definition for this parameter.

9. Before closing the Symbol Manager, repeat steps 3-8 to add the other
input parameter used by the example function block. Both are listed in the
table below. Enter them in the order shown.

10. Click Close to close the Symbol Manager.

The parameters used by the function are listed in the following table.

The following figure shows the contents of the Symbol Manager after the two
parameters have been defined. Although it does not matter for this example
function, which only adds two numbers, the order of the parameters in the
Symbol Manager is important. Parameter order is indicated in the Address
field, as shown below.

Function Example: Parameters

If you enter parameters out of order, you can change their order in the Symbol
Manager.

To change the order of parameters:

1. Right-click the parameter.

2. Click Decrease Address or Increase Address to change the order of the
parameter in the list.

Name Data Type In/Out Description
addend1 REAL Input First addend.
Addend2 REAL Input Second addend.
Wonderware InControl Language Editors User’s Guide

STL Example Program 179
Creating the Calling Program
A function does not run automatically, but rather must be called by a program.
This section describes how to create a Structured Text program to call the
example function.

To create a Structured Text Program:

1. 1. Follow the procedure that you used to create a function, as described in
"Creating a New Function."

On the File menu, click New.

Click Structured Text Program.

Click Program to select the Program Type. Then click OK.

Enter a name for the program (up to 31 characters) and click Save.This
example uses test_function.stl for the name.

The Structured Text editor displays a new Structured Text file ready for
editing.

2. Enter the following code for the program.
AddResult:=calc_add(addend1:=add_in1,addend2:=add_in2);

The following figure shows the contents of the Structured Text editor after
the code is entered:

Function Example: Code for Calling Program

3. On the File menu, click Save. Do not close the program.

To define the variables used by the calling program, see "Creating
Variables for the Calling Program."
Wonderware InControl Language Editors User’s Guide

180 Appendix C
Creating Variables for the Calling Program
This section describes how to define variables for the program that calls the
function.

1. If you have closed the calling program, double-click the program name to
open it.

Note that it is not necessary for the program to be open when you define
its variables. However, when the program is open, any local variables that
you define are associated with the program by default.

2. Click Symbol Manager on the Tools menu. The Symbol Manager
appears.
Wonderware InControl Language Editors User’s Guide

STL Example Program 181
3. Click New on the toolbar.

The Symbol Properties dialog box appears.

4. Enter AddResult in the Name field.

5. Click REAL in the Type field.

6. Click Add Local to add the new variable name to the Symbol Manager as
a local variable.

7. Before closing the Symbol Manager, repeat steps 2-6 to add the remaining
variables used by the calling program. All the variables are listed in the
table below. Order does not matter for these variables.

Continue the example by downloading and running the project. See
"Calling and Running the Function."

The variables used by the calling program are listed in the following table.

Name Data Type
AddResult REAL
add_in1 REAL
add_in2 REAL
Wonderware InControl Language Editors User’s Guide

182 Appendix C
Calling and Running the Function
This section describes how to run the function. The following is the general
procedure that you will follow:

Note that it is necessary to download and run the project because all the code,
the calling program and the function, must be loaded to the runtime engine.

Downloading the Project
To download the project:

1. On the Runtime menu, click Connect. This connects the Development
environment to the runtime engine. Ignore this step if you already
connected to the runtime engine in order to run any of the other example
programs.

2. On the Runtime menu, click Download Project. The Download Project
dialog box appears.

Function Example: Downloading the Project

3. Click OK to do a full reload of the runtime engine. The project is
downloaded to the runtime engine and all programs are set to the Pause
mode.
Wonderware InControl Language Editors User’s Guide

STL Example Program 183
Adding Variables to the Watch Window
To add the program variables to the Watch Window:

1. If the Watch Window is not visible, on the View menu, click Watch/Force
Variables. The Watch window appears.

2. To add the variables to the Watch window, click Add Symbol.

3. The Symbol Manager dialog box appears. The variables that you defined
are displayed in the Symbol Manager.
Wonderware InControl Language Editors User’s Guide

184 Appendix C
4. Click the following variable names to select them, and click OK: add_in1,
add_in2, and AddResult. Use the Ctrl and Shift keys to select multiple
items.

Function Example: Selecting Variables for Watch Window

The variables are added to the Watch window.

Setting the Project to Run Mode
To run the project:

1. On the Runtime menu, click Run Project.

2. Click Continue to run the project. This is the default option, even if you
have not run the project before, because the programs were downloaded
and then paused.

3. Note the values for add_in1 and add_in2 are both equal zero.

4. Double-click the value of add_in1 in the Watch window. The Modify
Value dialog box appears. The default new value to write to the add_in1 is
zero.

5. Enter 37.415 and click Write to enter the value in add_in1 to be added.

6. Enter 824.48 for the value for add_in2. The Structured Text program
test_function, which is continually calling calc_add, stores the result of the
addition to AddResult.
Wonderware InControl Language Editors User’s Guide

STL Example Program 185
7. Note the result of the addition in AddResult.

Function Example: Monitoring the Variables

Additional Characteristics of Functions
The following points characterize the function.

• Functions allow you to call the same code from many locations in your
project.

• Functions allow you to return a variable.

• Values for local variables defined in the function are not saved between
function calls. Use function blocks if you want to save local variable
values between calls.
Wonderware InControl Language Editors User’s Guide

186 Appendix C
Wonderware InControl Language Editors User’s Guide

Index 187

Index

A
Abort Programs 86
Action (SFC)

Action Qualifier 83
Adding 49
Defined 80

Addition
Structured Text Operator 101

AND
Structured Text Operator 101

Assignment Statement
Structured Text 103

B
Bitmap Library Editor 60
BREAK Statement

Structured Text 104

C
CASE Statement

Structured Text 104
Closed Contact (RLL) 17
Coil (RLL)

Adding 20
Negated Output 19
Negative Transition 20
Output 19
Positive Transition 20
Reset (Unlatch) 20
Set (Latch) 19

Comment
RLL, Adding 37
Structured Text, Adding 64

Comment Statement
Structured Text 105

Comparison
Structured Text Operator 101

Complement
RLL Function Block 101
Structured Text Operator 101

Contact
Adding 18

Contact (RLL)
Adding 18
Closed 17
Negative Transition 17
Open 17
Positive Transition 17

D
Data Types 102
Division

Structured Text Operator 101
DN, System Variable 73

E
Emergency Shut Down 86
Enumeration, User-Defined Data Type 105
EXIT Statement

Structured Text 106
Exponentiation

Structured Text Operator 101
Expression

Structured Text 101

F
Fault Mode

Program 85
FOR Statement

Structured Text 106
Function

Structured Text, Calling 108
Function Block

RLL, Adding 30

I
IF Statement

Structured Text 109
INCLUDE Statement

Structured Text 110
InControl

Data Types 102
Invert Bits

Structured Text Operator 101

J
Jump

SFC
Adding 52
Defined 87

Jump Coil
RLL

Adding 27
Defined 26

L
Label

RLL
Adding 26
Defined 26

SFC
Adding 53
Defined 87

Logic, Solving
RLL Program 10
SFC Program 68

Loop (SFC)
Adding 54
Defined 89
Wonderware InControl Language Editors User’s Guide

188 Index
M
Macro Step (SFC)

Adding 48
Defined 77
Usage Rules 79

Menu Bar
SFC 15

Modulus, Calculation
Structured Text Operator 101

Multiplication
Structured Text Operator 101

N
Negated Output Coil (RLL) 19
Negation

Structured Text Operator 101
Negative Transition Coil (RLL) 20
Negative Transition Contact (RLL) 17

O
Open Contact (RLL) 17
Operators

Structured Text 101
OR

Structured Text Operator 101
OR Branch (RLL)

Adding 22
Deleting 25

Output Coil (RLL) 19

P
Parallel Divergence (SFC)

Adding 57
Defined 91

Positive Transition Coil (RLL) 20
Positive Transition Contact (RLL) 17
Power Flow

RLL Program 10
SFC Program 68, 69

Power, Raise a Number to
Structured Text Operator 101

Pragma
Structured Text 113

Procedure, Defined 108
Program

Emergency Shut Down 86
Fault Mode 85
RLL

Editing 13
New 13

Safe State 86
SFC

Editing 40
New 40

Structured Text
Edit 96
New 96

R
REPEAT Statement

Structured Text 110
Reset (Unlatch) Coil (RLL) 20
RETURN Statement

Structured Text 111
Return Value

Function 108
RLL Program

Coil
Adding 20
Defined 19

Comment
Adding 37

Contact
Adding 18
Defined 17

Editing 13
Editing Tips 15
Function Block

Adding 30
Jump Coil

Adding 27
Defined 26

Label
Adding 26
Defined 26

New 13
OR Branch

Adding 22
Deleting 25

Power Flow 10
Rung, Adding 22
Solving Logic 10

RLL Toolbar 14
Rung (RLL), Adding 22

S
Safe-State Code 86
SCAN Statement

Structured Text 111
Select Divergence (SFC)

Adding 55
Defined 90

Set (Latch) Coil (RLL) 19
SFC Program

Action
Action Qualifier 83
Defined 80

Editing 40
Editing Tips 42
Jump

Adding 52
Defined 87

Label
Adding 53
Defined 87

Loop
Adding 54
Defined 89

Macro Step
Adding 48
Wonderware InControl Language Editors User’s Guide

Index 189
Defined 77
Usage Rules 79

New 40
Parallel Divergence

Adding 57
Defined 68

Power Flow 68, 69
Select Divergence

Adding 55
Defined 90

Solving Logic 68, 69
Step

Adding 43
Defined 71
System Variables 73

Step Template
Adding 60
Creating 58
Defined 73
Deleting 59
Editing 59

Transition
Adding 44
Defined 74

Transition Coil
Adding 29
Defined 29, 80

SFC Toolbar 41
Step (SFC)

Adding 43
Defined 71
System Variables 73

Step Template (SFC)
Adding 60
Creating 58
Defined 73
Deleting 59
Editing 59

STL Program
Editing Tips 99

Structured Text Program
Edit 96
Expression 101
Invert Bits 101
New 96
Operators 101
Statement

Assignment 103
BREAK 104
CASE 104
Comment 105
EXIT 106
FOR 107
Function Call 108
IF 109
INCLUDE 110
Pragma 113
REPEAT 110
RETURN 111
SCAN 111
WHILE 112

Structured Text Toolbar 97
Subtraction

Structured Text Operator 101

System Variables
DN 73
Step (SFC Program) 73
T 74
X 73

T
T, System Variable 73
Tips, Editing RLL 99
Tips, Editing SFC 42
Tips, Editing Structured Text Program 99
Toolbar

RLL Bar 14
SFC Bar 41
Structured Text Bar 97

Transition (SFC)
Adding 44
Defined 74

Transition Coil (SFC)
Adding 29
Defined 29, 80

V
Variables

System
SFC Step

DN 73
T 74
X 73

W
WHILE Statement

Structured Text 112

X
X, System Variable 73
XOR

Structured Text Operator 101
Wonderware InControl Language Editors User’s Guide

190 Index
Wonderware InControl Language Editors User’s Guide

Wonderware®

InControl™ Function and Function Block
Reference User’s Guide
Revision H

Last Revision: January 2004

Invensys Systems, Inc.

All rights reserved. No part of this documentation shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Invensys Systems, Inc. No copyright or patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has
been taken in the preparation of this documentation, the publisher and the
author assume no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained
herein.

The information in this documentation is subject to change without notice and
does not represent a commitment on the part of Invensys Systems, Inc. The
software described in this documentation is furnished under a license or
nondisclosure agreement. This software may be used or copied only in
accordance with the terms of these agreements.

© 2001-2004 Invensys Systems, Inc. All Rights Reserved.

Invensys Systems, Inc.
26561 Rancho Parkway South
Lake Forest, CA 92630 U.S.A.
(949) 727-3200
http://www.wonderware.com

Trademarks

All terms mentioned in this documentation that are known to be trademarks or
service marks have been appropriately capitalized. Invensys Systems, Inc.
cannot attest to the accuracy of this information. Use of a term in this
documentation should not be regarded as affecting the validity of any
trademark or service mark.

Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad, DT
Analyst, FactoryFocus, FactoryOffice, FactorySuite, FactorySuite A2,
InBatch, InControl, IndustrialRAD, IndustrialSQL Server, InTouch, InTrack,
MaintenanceSuite, MuniSuite, QI Analyst, SCADAlarm, SCADASuite,
SuiteLink, SuiteVoyager, WindowMaker, WindowViewer, Wonderware, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and
affiliates. All other brands may be trademarks of their respective owners.

Contents 3

Contents

CHAPTER 1: Functions and Function Blocks .7

Extensions to IEC 61131-3... 8
Function/Function Block Groups ... 9
ABORT_ALL... 14
ABS .. 15
ACOS ... 16
ADD .. 17
AND ... 19
ARRAY_TO_STRING .. 20
ASIN... 23
ATAN.. 24
BCD_TO_INT ... 25
CLOSEFILE... 26
CONCAT ... 31
COPYFILE .. 32
COS .. 34
CTD ... 35
CTU ... 38
CTUD .. 41
DATE_TO_REAL.. 45
DATE_TO_STRING ... 47
DELETE... 48
DELETEFILE .. 50
DIV... 52
EQ... 54
EXP ... 55
EXPT .. 56
F_TRIG .. 58
FIND .. 59
GE .. 60
GT .. 61
INSERT .. 62
INT_TO_BCD ... 64
INT_TO_REAL .. 65
INT_TO_STRING ... 66
LE... 67
LEFT .. 68
LEN .. 69
LN .. 70
LOG.. 71
Wonderware InControl™ Function and Function Block Reference User’s Guide

4 Contents
LT ..72
MAX ...73
MID...74
MIN...75
MOD ..76
MOVE...78
MSGWND ..80
MUL..82
NE ..83
NEG ...84
NEWFILE ...85
NOT ..87
OPENFILE..88
OR ..90
R_TRIG...91
READFILE ...92
REAL_TO_DATE...95
REAL_TO_INT ..97
REAL_TO_STRING...98
REAL_TO_TIME ...99
REPLACE...100
REWINDFILE ...102
RIGHT ..104
ROL ..105
ROR ..106
SHL ..107
SHR ..108
SIN ...109
SQRT...110
STRING_TO_ARRAY ...111
STRING_TO_DATE...112
STRING_TO_INT ..114
STRING_TO_REAL...115
STRING_TO_TIME ...116
SUB...117
TAN ..119
TIME_TO_REAL ...120
TIME_TO_STRING ...121
TOF ...122
TON ..126
TP..129
TRUNC ...132
WRITEFILE..133
Wonderware InControl™ Function and Function Block Reference User’s Guide

Contents 5
XOR ... 136

Index...137
Wonderware InControl™ Function and Function Block Reference User’s Guide

6 Contents
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 7
C H A P T E R 1

Functions and Function
Blocks

This chapter introduces the programming elements that you use in an RLL
program.

Contents
• Extensions to IEC 61131-3

• Function/Function Block Groups
Wonderware InControl™ Function and Function Block Reference User’s Guide

8 Chapter 1
Extensions to IEC 61131-3
This section describes the enhancements and other extensions to the IEC
61131-3 specification. InControl complies with IEC 61131-3 except where
noted here.

Counter Parameters

The Preset Value and the Current Value parameters used in the RLL counter
function blocks are DINT data types.

Math Functions

The following RLL math functions have inputs and outputs that accept any of
the Any_Bit data types, except for the BOOL:

• ADD

• DIV

• SUB

• MUL

• MOD

Parameters

The parameters for Structured Text functions can be listed in any order as long
as the formal parameter names are given as specified by IEC-61131-3.

Unsupported Functions

InControl does not support the following functions, which are defined in the
IEC 61131-3 specification: LIMIT, MUX, SEL

Unsupported Function Blocks

InControl does not support the following function blocks, which are defined in
the IEC 61131-3 specification: SR, RS, SEMA, EDGE_CHECK, RTC.

Additional Built-In Functions and Function Blocks

InControl provides the following functions and function blocks, which are not
defined in the IEC 61131-3 specification: ARRAY_TO_STRING,
STRING_TO_ARRAY, CLOSEFILE, COPYFILE, DELETEFILE,
NEWFILE, OPENFILE, READFILE, REWINDFILE, WRITEFILE,
MSGWND, ABORT_ALL.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 9
Function/Function Block Groups
The InControl functions and function blocks are predefined algorithms that
carry out single operations.

InControl Functions and Function Blocks

Group Type Description
Manual
Page

Bitwise AND Computes the bitwise AND of
two numbers.

19

NOT Computes the bitwise
complement of a number.

87

OR Computes the bitwise OR of two
numbers.

90

ROL Rotates the input left by a
specified number of bits.

105

ROR Rotates the input right by a
specified number of bits.

106

SHL Shifts the input left by a specified
number of bits.

107

SHR Shifts the input right by a
specified number of bits.

108

XOR Computes the bitwise Exclusive
OR of two numbers.

136

Comparison EQ Tests two inputs for equality. 54
GE Tests if first input is greater than

or equal second input.
60

GT Tests if first input is greater than
second input.

61

LE Tests if first input is less than or
equal second input.

67

LT Tests if first input is less than
second input.

72

NE Tests two inputs for inequality. 8
Wonderware InControl™ Function and Function Block Reference User’s Guide

10 Chapter 1
Conversion ARRAY_TO_S
TRING

Takes a byte array input and stores
the bytes as characters in a string.

20

BCD_TO_INT Converts a Binary -Coded
Decimal (BCD) input to an
ANY_INT value.

25

DATE_TO_RE
AL

Converts a DATE data type input
to an ANY_REAL value.

45

DATE_TO_ST
RING

Converts a DATE data type input
to a string.

47

INT_TO_BCD Converts an integer to the
equivalent Binary-Coded Decimal
(BCD) representation of the
value.

64

INT_TO_REAL Converts an ANY_INT input to
an ANY_REAL value.

65

INT_TO_STRI
NG

Converts an ANY_INT input to a
string.

66

Conversion REAL_TO_DA
TE

Converts an ANY_REAL input to
a DATE value.

9

REAL_TO_INT Converts an ANY_REAL input to
an ANY_INT value.

9

REAL_TO_ST
RING

Converts an ANY_REAL input to
a string.

9

REAL_TO_TI
ME

Converts an ANY_REAL input to
a TIME value.

9

STRING_TO_
ARRAY

Takes a string input and stores the
characters of the string in a byte
array.

11

STRING_TO_
DATE

Converts an input string to a
DATE value.

11

STRING_TO_I
NT

Converts an input string to an
ANY_INT value.

11

STRING_TO_R
EAL

Converts a string input to an
ANY_REAL value.

11

STRING_TO_T
IME

Converts a string input to a TIME
value.

11

TIME_TO_RE
AL

Converts a TIME input to an
ANY_REAL value.

12

TIME_TO_STR
ING

Converts a TIME input to a string. 12

Group Type Description
Manual
Page
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 11
Counter CTD Counts events by decrementing by
one.

35

CTU Counts events by incrementing by
one.

38

CTUD Counts events up or down. 41
File CLOSEFILE Closes a file. 26

COPYFILE Copies a file. 32
DELETEFILE Deletes a file. 50
NEWFILE Creates a new file. 8
OPENFILE Opens an existing file. 8
READFILE Reads data from a file. 9
REWINDFILE Rewinds a file to the beginning. 10
WRITEFILE Writes data to a file. 13

Math ABS Computes the absolute value of a
value.

1

ADD Adds two values. 1
DIV Divides one value by another. 5
EXPT Raises a value to the power

specified by a second value.
5

MAX Determines the larger of two
values.

73

MIN Determines the smaller of two
values.

75

MOD Divides one value by another and
stores the remainder.

76

MOVE Copies data from one location to
another.

78

MUL Multiplies two values. 82
NEG Negates (inverts) the inputs. 84
SQRT Computes the square root of a

value.
110

SUB Subtracts one value from another. 117
TRUNC Removes one or more of the least

significant digits of an
ANY_REAL data type.

132

Group Type Description
Manual
Page
Wonderware InControl™ Function and Function Block Reference User’s Guide

12 Chapter 1
String CONCAT Concatenates a string input to the
end of another string.

3

DELETE Deletes characters from the
middle of a string input.

4

FIND Searches for one string input
within another.

5

INSERT Inserts a string input into another
string.

6

LEFT Copies the leftmost characters
from a string input.

6

LEN Stores the length of a string input. 6
MID Copies characters from the middle

of a string input.
74

MSGWND Displays a message in the Output
Window.

80

READFILE Replaces characters in a string
input with another string input.

92

RIGHT Copies the rightmost characters
from a string input.

104

Timer TOF Provides off-delay timing of
events.

122

TON Provides on-delay timing of
events.

126

TP Activated by a pulse, provides
off-delay timing of events.

129

Trig/Log ACOS Computes the arc cosine of a
value.

16

ASIN Computes the arc sine of a value. 23
ATAN Computes the arc tangent of a

value.
24

COS Computes the cosine of a value. 34
EXP Computes the natural log

exponentiation of a value.
55

LN Computes the natural log of a
value.

70

LOG Computes the log (base 10) of a
value.

71

SIN Computes the sine of a value. 10
TAN Computes the tangent of a value. 11

Group Type Description
Manual
Page
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 13
Trigger ABORT_ALL Aborts all programs that are
running.

14

F_TRIG Turns on an output when triggered
by a falling edge trigger.

58

R_TRIG Turns on an output when triggered
by a rising edge trigger.

9

Group Type Description
Manual
Page
Wonderware InControl™ Function and Function Block Reference User’s Guide

14 Chapter 1
ABORT_ALL
The ABORT_ALL function block aborts all programs running in the runtime
engine.

Graphical representation:

Structured text syntax:
ABORT_ALL();

Operation is as follows:

• ABORT_ALL aborts all programs (RLL, SFC, Structured Text, etc.),
changes the runtime engine monitor icon to the error condition, and sets
the runtime engine to the Fault mode.

• No other logic following the ABORT_ALL is executed.

• The EN BOOL parameter is used only in the graphical languages to enable
the function block to execute. ENO follows EN unless an error condition
occurs within the function block.

WARNING! The ABORT_ALL function block stops all programs in a
project. An unplanned stop of all programs can cause unpredicted operation by
output devices which can result in injury or death to personnel and/or damage
to equipment. Design your program code very carefully so that the
ABORT_ALL is only executed under carefully controlled conditions.

Other Trigger Function Blocks

F_TRIG R_TRIG
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 15
ABS
The ABS function calculates the absolute value of the input.

 Graphical representation:

Structured text syntax:
<OUT> := ABS(<IN>);

Operation is as follows:

• ABS takes the absolute value of the input and stores the result in the
output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Examples of the ABS operation:

ABS(14) returns 14.

ABS(-7.5) returns 7.5.

Other Math Functions

Parameter Type Description
IN ANY_NUM Contains the value for which the absolute

value is calculated.
Any SINT, INT, DINT, REAL, or LREAL
constant or variable.

OUT ANY_NUM Contains the absolute value of the input.
Any SINT, INT, DINT, REAL, or LREAL
variable.

ADD DIV EXPT
MAX MIN MOD
MOVE MUL NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

16 Chapter 1
ACOS
The ACOS function calculates the arc cosine of the input. The result is in
radians.

Graphical representation:

Structured text syntax:
<OUT> := ACOS(<IN>);

Operation is as follows:

• If the input is within range (-1 to +1), ACOS stores the arc cosine of the
input to the output variable in radians.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Examples of the ACOS operation:

ACOS(0) returns pi/2 (1.570...).

ACOS(1) returns 0.

Other Trig/Log Functions

Parameter Type Description
IN ANY_REAL Contains the value for which the arc cosine is

calculated.
Any REAL or LREAL constant or variable (-1.0
to + 1.0).

OUT ANY_REAL Contains the arc cosine of IN in radians.
Any REAL or LREAL variable.

ASIN ATAN COS
EXP LN LOG
SIN TAN
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 17
ADD
The ADD function sums the values of two inputs.

Graphical representation:

Structured text syntax:
<OUT> := <IN1> + <IN2>;

Operation is as follows:

• ADD adds the two inputs and stores the sum to the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can also use this function with arrays. For example, you can add a number
to every element in an array with the following line:

Array1 := Array2 +1;

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Parameter Type Description
IN1 ANY_NUM

ANY_BIT ¹

Contains the first value to be added.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

IN2 ANY_NUM
ANY_BIT ¹

Contains the second value to be added.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

OUT ANY_NUM
ANY_BIT ¹

Contains the sum of the addition of IN1 and
IN2.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD variable.

1 BOOL data types are not allowed.
Wonderware InControl™ Function and Function Block Reference User’s Guide

18 Chapter 1
Other Math Functions

ABS DIV EXPT
MAX MIN MOD
MOVE MUL NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 19
AND
The AND function does a bitwise logical AND of two values.

Graphical representation:

Structured text syntax:
<OUT> := <IN1> AND <IN2>;

Operation is as follows:

• AND does a logical AND on each bit of the two inputs.

• AND stores the result of the AND operation to the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can also use this function with arrays as shown in the examples below.

Examples of the AND operation:

2#0011 AND 2#0101 returns 2#0001.

TRUE AND FALSE returns FALSE.

Array1 := Array2 AND #16FFFE;

Array1 := Array1 AND Array2;

Other Bitwise Functions

Parameter Type Description
IN1 ANY_BIT Contains the first value to be ANDed.

Any BOOL, BYTE, WORD, DWORD constant
or variable.

IN2 ANY_BIT Contains the second value to be ANDed.
Any BOOL, BYTE, WORD, DWORD constant
or variable.

OUT ANY_BIT Contains the result of ANDing IN1 and IN2.
Any BOOL, BYTE, WORD, DWORD variable.

NOT OR ROL
ROR SHL SHR
XOR
Wonderware InControl™ Function and Function Block Reference User’s Guide

20 Chapter 1
ARRAY_TO_STRING
The ARRAY_TO_STRING function converts an input array of bytes to a fixed-
length string.

Graphical representation:

Structured text syntax:
ARRAY_TO_STRING(OUT := <OUT> ,IN := <IN>);

Operation is as follows:

• ARRAY_TO_STRING converts each byte in the input array to an ASCII
character, stores each character to the output variable.

• The length of the string in OUT is the same as the size of the array.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

The following is an example of the ARRAY_TO_STRING operation:

The input variable = byte_array

The output variable = Cnv_string

Parameter Type Description
IN BYTE Specifies the array of bytes to be converted.

Any array of bytes containing valid STRING
character codes. Values are decimal codes.

OUT STRING Contains the result of the conversion of the
array of bytes to a fixed-length string.
Any STRING variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 21
If byte_array consists of 12 elements with the values shown in the following
figure, then Cnv_string contains 'InControl'.

ARRAY_TO_STRING Example 1

Because the string is of fixed length, the output of the ARRAY_TO_STRING
function is the same length as the size of the array. If the RIGHT function is
executed on the output of the ARRAY_TO_STRING, the count begins at the
rightmost element in the output. In the following example, the RIGHT function
is executed after the ARRAY_TO_STRING,

IN = Cnv_string
L = 2
OUT = get_string_rght_chars.

The string that is created contains OL when elements 8-9 of the array contain
82 and 79, respectively. See the following figure.

ARRAY_TO_STRING Example 2
Wonderware InControl™ Function and Function Block Reference User’s Guide

22 Chapter 1
Other Conversion Functions

BCD_TO_INT DATE_TO_REAL DATE_TO_STRING
INT_TO_BCD INT_TO_REAL INT_TO_STRING
REAL_TO_DATE REAL_TO_INT REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 23
ASIN
The ASIN function calculates the arc sine of the input. The result is in radians.

Graphical representation:

Structured text syntax
<OUT> := ASIN(<IN>);

Operation is as follows:

• If the input is within range (-1 to +1), ASIN stores the arc sine of the input
to the output variable in radians.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Examples of the ASIN operation:

ASIN(0) returns 0.

ASIN(1)returns pi/2 (1.570...).

Other Trig/Log Functions

Parameter Type Description
IN ANY_REAL Contains the value for which the arc sine is

calculated.
Any REAL or LREAL constant or variable
 (-1.0 to + 1.0).

OUT ANY_REAL Contains the arc sine of IN in radians.
Any REAL or LREAL variable.

ACOS ATAN COS
EXP LN LOG
SIN TAN
Wonderware InControl™ Function and Function Block Reference User’s Guide

24 Chapter 1
ATAN
The ATAN function calculates the arc tangent of the input. The result is in
radians.

Graphical representation:

Structured text syntax:

<OUT> := ATAN(<IN>);

Operation is as follows:

• If the input is within range of the selected data type, ATAN stores the arc
tangent of the input to the output variable in radians.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Examples of the ATAN operation:

ATAN(0) returns 0.

ATAN(1) returns pi/4.

Other Trig/Log Function Blocks

Parameter Type Description
IN ANY_REAL Contains the value for which the arc tangent is

calculated.
Any REAL or LREAL constant or variable.

OUT ANY_REAL Contains the arc tangent of IN in radians.
Any REAL or LREAL variable.

ACOS ASIN COS
EXP LN LOG
SIN TAN
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 25
BCD_TO_INT
The BCD_TO_INT function converts a Binary-Coded Decimal (BCD) input to
an ANY_INT value.

Graphical representation:

Structured text syntax:
<OUT> := BCD_TO_INT (<IN>);

Operation is as follows:

• BCD_TO_INT converts the integer representation of the BCD input to an
integer with the value of the BCD input.

• If the input is an invalid BCD number, the output variable is set to -1.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the BCD_TO_INT function.

BCD_TO_INT(16#321) returns 10#321

Other Conversion Functions

Parameter Type Description
IN ANY_INT Contains the value to convert.

A BCD number, variable or expression that
resolves to an ANY_INT data type (SINT, INT,
DINT, BYTE, WORD, DWORD).

OUT ANY_INT Contains the result of the conversion.
An ANY_INT variable data type (SINT, INT,
DINT, BYTE, WORD,DWORD).

ARRAY_TO_STRING DATE_TO_REAL DATE_TO_STRING
INT_TO_BCD INT_TO_REAL INT_TO_STRING
REAL_TO_DATE REAL_TO_INT REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

26 Chapter 1
CLOSEFILE
The CLOSEFILE function closes a file that has been opened by the
OPENFILE or the NEWFILE functions. The CLOSEFILE is one of eight
functions that do file operations. Note that these functions are not designed for
high-speed I/O execution or data transfers of large blocks of information.

Graphical representation:

Structured text syntax:

CLOSEFILE (<file control block name>);

Operation is as follows:

• CLOSEFILE closes the file that is associated with the control block,
which you specify in the File Control Block Name field.

Note that you do not designate the file by its file name, only by the file
control block. All file functions that operate on the same file must use the
same File Control Block name.

Parameter Type Description
File Control
Block Name

FILE Name of the file control block that handles
operations for this file.

BUSY ¹ BOOL Indicates the file control block is busy.
Any BOOL variable.

OPEN ¹ BOOL Indicates the file has been opened.
Any BOOL variable.

ERR ¹ ANY_INT Contains the error code if a file operation error
occurs.
Any SINT, INT, DINT, BYTE, WORD, DWORD
variable.

EFLAG ¹ BOOL Indicates a file operation error has occurred.
Any BOOL variable.

1 Entries in the output fields are optional. However, for each field there is a
default file control variable. As you design your program, you must use
these output variables to handle file control. These fields reflect outputs
in the specified file control block and are not actual parameters to the
CLOSEFILE function.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 27
• If an error occurs, the file error variable is set to TRUE and a message
appears in the Output window and the Wonderware Logger. The graphical
output ENO is set to FALSE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

All the file-type functions use file control block variables to handle file control.
Three of these variables specify status of a file after it is open: read/write,
whether data can be appended, and whether other applications can access the
file. Eight variables provide a means of monitoring errors, whether a file is in
use, when an operation is completed, etc. You can use any of these variables in
an expression, contact or coil instead of a symbol of the same type. To
reference a variable, enter the control block name followed by a period and the
specific variable name. For example, FILEA.BUSY refers to the file control block
variable BUSY for the file referenced by control block FILEA.

For the three variables that specify file status after it is open, you can specify
initial values for the variables in the Symbol Properties dialog box in the
Symbol Manager. If you prefer, you can use MOVE functions to assign values
to the variables before opening the file. These three input variables are listed in
the following table.
Wonderware InControl™ Function and Function Block Reference User’s Guide

28 Chapter 1
File Control Input Variables

Variable Description

fcb.ACCESS ¹ Byte variable specifies read/write status of the file after it
opens.
FileAccess.ReadWrite = (default) file is open for

read/write operations.
FileAccess.Read = file is open for read-only

operations.
FileAccess.Write = file is open for write-only

operations.

fcb.APPEND ¹ Boolean variable specifies whether data can be appended to
the file after it opens. Only valid when file is open with
write status. That is, the ACCESS variable = 0 or 2.
TRUE = data will be appended to the file.
FALSE = (default) data cannot be

appended to the file.

fcb.SHARE ¹ Byte variable specifies how file can be accessed after it is
open.
FileShare.ReadWrite = (default) other applications can

access the file for read-write
operations.

FileShare.Read = other applications can access the
file for read-only operations.

FileShare.Write = other applications can access the
file for write-only operations.

FileShare.None = other applications cannot access
the file.

1 These variables are read and take effect only when the FILEOPEN and
FILENEW function blocks are executed.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 29
The seven output variables that handle file operations are listed in the
following table.

File Control Output Variables

Variable Description

fcb.OPEN ¹ Boolean variable indicates the file has been opened. The
system sets the File Open variable to TRUE when the file is
open.

fcb.BUSY ¹ Boolean variable indicates that the file is being accessed. The
system sets the File Control Busy variable to TRUE when the
file is being accessed by another file function. If you attempt
to execute a file type function while this variable is TRUE, an
error occurs (error code 15).

fcb.EFLAG ¹ Boolean variable indicates when an error occurs. If an error
occurs during a file operation, the system sets the File Error
variable to TRUE. This variable is not reset automatically; the
program must reset the variable. You can also reset it
manually through the Watch window. A file type function
cannot execute while this variable is TRUE. The program
does not go into Fault mode when an error occurs.

fcb.RDN Boolean variable indicates that a read operation has been
completed. The system sets the File Read Done variable to
TRUE when the read operation is finished.

fcb.WDN Boolean variable indicates that a write operation has been
completed. The system sets the File Write Done variable to
TRUE when the write operation is finished.

fcb.EOF Boolean variable indicates that the system encountered an End
Of File. The system sets the End Of File variable to TRUE
when it encounters the EOF.

fcb.ERR ¹ Integer variable contains the error code if an error occurs. If an
error occurs during a file operation, the system writes an error
code to the File Error Code integer. The table that follows lists
the error codes.

1 Entries in these output fields for graphical languages are optional.
However, for each field there is a default file control variable. As you
design your program, you must use these output variables to handle file
control. Use either your own meaningful names, or the default variable
names.
Wonderware InControl™ Function and Function Block Reference User’s Guide

30 Chapter 1
The following table lists the error codes for the file type function blocks.

File Control Error Codes

You can do only one file operation for each File Control Block at a time. Note
that file control I/O operations take place asynchronously to program
execution.

The following is an example of the CLOSEFILE function.
CLOSEFILE (FCB:= datrpt);

The system closes the file associated with the file control block called datrpt.

For an example that uses the CLOSEFILE with several other File procedures,
see "WRITEFILE."

Other File Functions.

Error Code Error Description
15 File control block is busy.
16 No file name specified.
17 File has not been opened.
18 File not found.
19 Disk full.
20 Read failed.
21 File copy failed.
22 Write failed.
25 File close failed.
26 File already exists.
27 File is open.
28 File is read only.
29 File open failed.
30 General error.
31 Reached end of file.
32 Share violation. Another operation has locked the file.
33 Access denied. Can occur if you request one type of access

and use another.
34 Not enough memory. The maximum size of a field of data that

you can read/write is 1 KB.
35 Bad data. Can occur if specified data types are mismatched.

COPYFILE DELETEFILE NEWFILE
OPENFILE READFILE REWINDFILE
WRITEFILE
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 31
CONCAT
The CONCAT function concatenates an input string to the end of another input
string.

Graphical representation:

Structured text syntax:
<OUT> := CONCAT (<IN1>, <IN2>);

 Operation is as follows:

• CONCAT concatenates the string in the second input to the end of the
string in the first input.

CONCAT stores the result to the output variable

• If the sum of the lengths of the two strings is greater than 2048, the output
variable is set to an empty string.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the CONCAT operation:

CONCAT('AB', 'SMITH') returns 'ABSMITH'.

Other String Functions

Parameter Type Description
IN1 STRING Specifies the first string.

Any valid STRING character or STRING
variable.

IN2 STRING Specifies the second string.
Any valid STRING literal or STRING variable.

OUT STRING Contains the result of the concatenation of the
strings.
Any STRING variable.

DELETE FIND INSERT
LEFT LEN MID
MSGWND REPLACE RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

32 Chapter 1
COPYFILE
The COPYFILE function copies an existing file. The COPYFILE is one of
eight function that do file operations. Note that these functions are not
designed for high-speed I/O execution or data transfers of large blocks of
information.

Graphical representation:

Structured text syntax:
COPYFILE (FCB:= <file control block name>,OUT:=

<destination file name>, IN:= <source file name>);

Parameter Type Description
FCB FILE Name of the file control block that handles

operations for this file.
IN STRING Name of the file to be copied. The default path

is the same as for the runtime engine.
Any STRING variable or file name.

OUT STRING Name of the file to which the source is copied.
Any STRING variable or file name.

BUSY ¹ BOOL Indicates the file control block is busy.
Any BOOL variable.

OPEN ¹ BOOL Indicates the file has been opened.
Any BOOL variable.

EFLAG ¹ BOOL Indicates a file operation error has occurred.
Any BOOL variable.

ERR ¹ ANY_INT Contains the error code if a file operation error
occurs. Any SINT, INT, DINT, BYTE, WORD,
DWORD variable.

1 Entries in the output fields are optional. However, for each field there is a
default file control variable. As you design your program, you must use
these output variables to handle file control. These fields reflect outputs in
the specified file control block and are not actual parameters to the COPYFILE
function. For a detailed description of the file control variables, see
"CLOSEFILE."
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 33
Operation is as follows.

• COPYFILE copies the source file to a new file and assigns it the
destination file name. The default file path is the same as that of the
runtime engine.

• The file control variables handle access to the file and error conditions, as
described for the "CLOSEFILE" function block. All file function blocks
that operate on the same file must use the same File Control Block name.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

• If an error occurs, the file error variable is set to TRUE and a message
appears in the Output window and the Wonderware Logger. The graphical
output ENO is set to FALSE. Attempting to copy over an existing file
generates an error (error code 26). For a complete list of the error codes,
see "CLOSEFILE."

You can do only one file operation for each File Control Block at a time. Note
that file control I/O operations take place asynchronously to program
execution.

The following is an example of the COPYFILE function.
COPYFILE (FCB:= datrpt, OUT:= "newdatcopy" IN:=

"olddatcopy");

The system makes a copy of the file called olddatcopy and names it
newdatcopy.

Other File Functions

CLOSEFILE DELETEFILE NEWFILE
OPENFILE READFILE REWINDFILE
WRITEFILE
Wonderware InControl™ Function and Function Block Reference User’s Guide

34 Chapter 1
COS
The COS function calculates the cosine of the input, which must be in radians.

Graphical representation:

Structured text syntax:
<OUT> := COS(<IN>);

Operation is as follows:

• If the input (radians) is within range of the selected data type, COS stores
the cosine of the input to the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Examples of the COS operation:

COS(0) returns 1.

COS(pi/2) returns 0.

Other Trig/Log Functions

Parameter Type Description
IN ANY_REAL Contains the value in radians for which the

cosine is calculated.
Any REAL or LREAL constant or variable.

OUT ANY_REAL Contains the cosine of IN.
Any REAL or LREAL variable.

ACOS ASIN ATAN
EXP LN LOG
SIN TAN
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 35
CTD
The CTD function block counts recurring events down from a preset count,
turning on the output when the current count is equal to or less than zero.

Graphical representation:

Structured text syntax:
<CTD Name>(CD:=<count down>, LD:=<load>, PV:=<preset

value>, EN:=<enable>,Q:=<output>, CV:=<current value>,
ENO:=<enable output>);

WARNING! Assigning the same function block name to different counters
may cause unpredictable operation by the controller, which can result in death
or injury to personnel and/or damage to equipment. Always use a unique name
for each counter.

Parameter Type Description
CTD Name CTD Unique name for the counter.
CD BOOL Input decrements the counter when CD

transitions from FALSE to TRUE.
Any BOOL variable.

LD BOOL Loads the counter with the Preset Value.
 Any BOOL variable.

PV DINT Contains the value at which the CTD begins to
count.
Any DINT constant or variable.

EN BOOL Enables the counter. Any BOOL variable.
Q BOOL Output changes to TRUE when CV = zero.

Any BOOL variable.
CV DINT Contains the current count of the counter.

Any DINT variable.
ENO BOOL Echoes EN.

Any BOOL variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

36 Chapter 1
Operation is as follows:

• When the enable input EN is TRUE the counter is enabled.

When EN is FALSE, the counter is not enabled and cannot begin counting.

• When load LD is set to TRUE, current value CV is set equal to preset
value PV, and output Q is set to FALSE.

The counter does not begin counting while LD is TRUE.

• The counter decrements CV by one each time the count down input CD
transitions from FALSE to TRUE.

• When CV = zero, the counter rung output Q is set to TRUE.

• If EN is set to FALSE while the counter is counting, the counter freezes Q
and CV in their current states until EN is set to TRUE again.

• Enable output ENO echoes the value of EN.

When the program is running, you can double-click a CTD to display the CTD
dialog box. The box displays the current value of all function block inputs and
outputs. You can also open the Watch window and enter counter variables that
you want to observe at runtime.

You can use any of the CTD inputs and outputs in any expression, contact or
coil instead of a symbol of the same type. To reference a CTD input or output,
enter the function block name followed by a period and the specific input or
output suffix. For example, CTD1.CD refers to the count down input of CTD1.
All counter variables are listed in the following table.

An example of the CTD timing diagram is shown in the figure at the end of this
section. The sequence of events is listed below:

A. PV has been previously loaded with the preset value of 3.
EN and ENO have been previously been set to TRUE.
CV contains the current value of 3.

B. EN transitions from TRUE to FALSE, disabling the counter.
CV, which had been counting down as CD changed state, holds at 1.

C. EN transitions from FALSE to TRUE, re-enabling the counter.
CV resumes counting down at the next FALSE-to-TRUE transition of CD,
and reaches 0.

D. Q transitions to TRUE when CV=0.

Variable Reference Name
CD xxx.CD
LD xxx.LD
PV xxx.PV
EN xxx.EN
Q xxx.Q
CV xxx.CV
ENO xxx.ENO
Note xxx denotes the counter function block name.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 37
E. LD transitions from FALSE to TRUE, which loads the preset value of 3
into CV.
CV holds at 3 while LD is TRUE.
Q transitions to FALSE when CV contains the preset value.

CTD Timing Diagram

Other Counter Function Blocks

CTU CTUD
Wonderware InControl™ Function and Function Block Reference User’s Guide

38 Chapter 1
CTU
The CTU function block counts recurring events up to a preset count, turning
on the output when the current count is greater than or equal to the preset
count.

Graphical representation:

Structured text syntax:
<CTU Name>(CU:=<count up>, R:=<reset>, PV:=<preset value>,

EN:=<enable>, Q:=<output>, CV:=<current value>,
ENO:=<enable output>,);

WARNING! Assigning the same function block name to different counters
may cause unpredictable operation by the controller, which can result in death
or injury to personnel and/or damage to equipment. Always use a unique name
for each counter.

Parameter Type Description
CTU Name CTU Unique name for the counter.
CU BOOL Input increments the counter when CU

transitions from FALSE to TRUE.
Any BOOL constant or variable.

R BOOL Resets the counter.
Any BOOL constant or variable.

PV DINT Contains the value up to which the CTU
counts.
Any DINT constant or variable.

EN BOOL Enables the counter.
Any BOOL constant or variable.

Q BOOL Output changes to TRUE when CV = PV.
 Any BOOL constant or variable.

CV DINT Contains the current count of the counter.
Any DINT variable.

ENO BOOL Echoes EN.
Any BOOL constant or variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 39
Operation is as follows:

• When the enable input EN is TRUE the counter is enabled.

When EN is FALSE, the counter is not enabled and cannot begin counting.

• When reset R is set to TRUE, current value CV is set to zero, and output Q
is set to FALSE.

The counter does not begin counting while R is TRUE.

• The counter increments CV by one each time the count up input CU
transitions from FALSE to TRUE.

• When CV = PV, the counter rung output Q is set to TRUE.

• If EN is set to FALSE while the counter is counting, the counter freezes Q
and CV in their current states until EN is set to TRUE again.

• Enable output ENO echoes the value of EN.

When the program is running, you can double click on a CTU to display the
CTU dialog box. The box displays the current value of all function block
inputs and outputs. You can also open the watch window and enter counter
variables that you want to observe at runtime.

You can use any of the CTU inputs and outputs in any expression, contact or
coil instead of a symbol of the same type. To reference a CTU input or output,
enter the function block name followed by a period and the specific input or
output suffix. For example, CTU1.CU refers to the count up input of CTU1.
All counter variables are listed in the following table.

An example of the CTU timing diagram is shown in the figure at the end of this
section. The sequence of events is listed below:

A. PV has been previously loaded with the preset value of 3.
EN and ENO transition from FALSE to TRUE.
CV contains the current value of 0.

B. EN transitions from TRUE to FALSE, disabling the counter.
CV, which had been counting up as CU changed state, holds at 2.

C. EN transitions from FALSE to TRUE, re-enabling the counter.
CV resumes counting up at the next FALSE-to-TRUE transition of CU,
and reaches 3.
CV continues counting up until reset by R.

D. Q transitions to TRUE when CV=3.

Variable Reference Name
CU xxx.CU
R xxx.R
PV xxx.PV
EN xxx.EN
Q xxx.Q
CV xxx.CV
ENO xxx.ENO
Note xxx denotes the counter function block name.
Wonderware InControl™ Function and Function Block Reference User’s Guide

40 Chapter 1
E. R transitions from FALSE to TRUE, which resets CV to 0. CV holds at 0
while R is TRUE.

CTU Timing Diagram

Other Counter Function Blocks

CTU CTUD
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 41
CTUD
The CTUD function block counts recurring events up or down, turning on an
up-count output when the current count is greater than or equal to the preset
count, or a down-count output when the current count is less than or equal to
zero.

Graphical representation:

Structured text syntax:
<CTUD Name>(CU:=<count up>, CD:=<count down>, R:=<reset>,

LD:=<load>, PV:=<preset value>, EN:=<enable>,
QU:=<count up output>, QD:=<count down output>,
CV:=<current value>, ENO:=<enable output>,);

Parameter Type Description
CTUD Name CTUD Unique name for the counter.
CU BOOL Input increments current value CV when CU

transitions from FALSE to TRUE.
Any BOOL constant or variable.

CD BOOL Decrements current value CV when CD
transitions from FALSE to TRUE.
Any BOOL constant or variable.

R BOOL Sets current value CV to zero and sets the
count-up output QU to FALSE.
Any BOOL constant or variable.

LD BOOL Sets the current count CV to preset value PV
and sets the count-down output to FALSE.
Any BOOL constant or variable.

PV DINT Contains value to which CTUD counts up, or
at which CTUD begins to count down.
Any DINT constant or variable.

EN BOOL Enables the counter.
 Any BOOL constant or variable.

QU BOOL Output changes to TRUE when current value
Output CV = preset value PV.
Any BOOL constant or variable.

QD BOOL Changes to TRUE when current value CV =
zero. QD is FALSE when CV > 0.
Any BOOL constant or variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

42 Chapter 1
WARNING! Assigning the same function block name to different counters
may cause unpredictable operation by the controller, which can result in death
or injury to personnel and/or damage to equipment. Always use a unique name
for each counter.

Counting Up or Down
Operation is as follows:

• When the enable input EN is TRUE the counter is enabled for up or down
counting.

When EN is FALSE, the counter is not enabled and cannot count up or
down.

• If EN is set to FALSE while the counter is counting, current value CV,
count-up output QU, and count-down output QD are frozen in their current
states until EN is set to TRUE again.

• Enable output ENO echoes the value of EN.

• When reset R is set to TRUE, the load LD is disabled.

Counting Up
Operation is as follows:

• When reset R is set to TRUE, current value CV is set to zero and count-up
output QU is set to FALSE.

When R is TRUE, the counter cannot count, either up or down.

• The counter increments CV by one each time the count-up input CU
transitions from FALSE to TRUE.

• When CV = the preset value PV, the counter sets QU to TRUE.

 QU is FALSE when CV < PV.

Counting Down
Operation is as follows:

• When load LD is set to TRUE, current value CV is set equal to PV and
countdown output QD is set to FALSE.

When LD is TRUE, the counter cannot count, either down or up.

• The counter decrements CV by one each time the count-down input CD
transitions from FALSE to TRUE.

CV DINT Contains the current count CV of the counter.
Any DINT variable.

ENO BOOL Echoes EN. Valid values: any BOOL variable.
Any BOOL constant or variable.

Parameter Type Description
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 43
• When CV = zero, the counter sets QD to TRUE.

QD is FALSE when CV > zero

When the program is running, you can double click on a CTUD to display the
CTUD dialog box. The box displays the current value of all function block
inputs and outputs. You can also open a watch window and enter counter
variables that you want to observe at runtime.

You can use any of the CTUD inputs and outputs in any expression, contact or
coil instead of a symbol of the same type. To reference a CTUD input or
output, enter the function block name followed by a period and the specific
input or output suffix. For example, CTUD1.CU refers to the count up input of
CTUD1. All counter variables are listed in the following table.

An example of the CTUD timing diagram is shown in the figure at the end of
this section. The sequence of events is listed below:

A. PV has been previously loaded with the preset value of 2.
EN and ENO transition from FALSE to TRUE.
QU is FALSE and QD is TRUE because CV contains the current value of
0.

B. CV, which had been counting up as CU changed state, reaches 2.
QU transitions to TRUE.

C. CV decrements to 1 when CD transitions from FALSE to TRUE.
QU transitions to FALSE.

D. CV decrements to 0 at the next transition of CD from FALSE to TRUE.
QD transitions to TRUE.

E. After point D, EN transitions from TRUE to FALSE, disabling the
counter.
CV, QU, and QD are frozen in their current states. Prior to point E, EN
transitions from FALSE to TRUE, re-enabling the counter.

F. LD transitions from FALSE to TRUE.
The preset value of 2 is loaded to CV, QD is set to FALSE, and QU is set
to TRUE.

Variable Reference Name
CU xxx.CU
CD xxx.CD
R xxx.R
LD xxx.LD
PV xxx.PV
EN xxx.EN
QU xxx.QU
QD xxx.QD
CV xx.CV
ENO xxx.ENO
Note xxx denotes the counter function block name.
Wonderware InControl™ Function and Function Block Reference User’s Guide

44 Chapter 1
G. R transitions from FALSE to TRUE.
CV is set to 0, QU is set to FALSE, and QD is set to TRUE.

CTUD Timing Diagram

Other Counter Function Blocks

CTD CTU
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 45
DATE_TO_REAL
The DATE_TO_REAL function converts a DATE data type input to an
ANY_REAL value.

Graphical representation:

Structured text syntax:
<OUT> := DATE_TO_REAL (<IN>);

Operation is as follows:

• DATE_TO_REAL converts the value represented by the input variable and
stores the result as an ANY_REAL data type in the output variable.

The whole number portion of the real number represents the number of
days since December 30, 1899. The fractional part of the number
represents time of day.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Note To help ensure accuracy, use an LREAL data type for the result when
converting a DT data type.

Examples of the DATE_TO_REAL operation:

DATE_TO_REAL(DT#2000-12-25:06:00:00) returns 36885.25

DATE_TO_REAL(TOD#18:00:00) returns 0.75

Parameter Type Description
IN ANY_DATE Contains the date value to convert.

Any value, variable, or expression that
resolves to an ANY_DATE data type (DT,
DATE, TOD).

OUT ANY_REAL Contains the result of the conversion.
An ANY_REAL data type (REAL, LREAL).
Wonderware InControl™ Function and Function Block Reference User’s Guide

46 Chapter 1
Other Conversion Functions

ARRAY_TO_STRING BCD_TO_INT DATE_TO_STRING
INT_TO_BCD INT_TO_REAL INT_TO_STRING
REAL_TO_DATE REAL_TO_INT REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 47
DATE_TO_STRING
The DATE_TO_STRING function converts a DATE data type input to a string.

Graphical representation:

Structured text syntax:
<OUT> := DATE_TO_STRING (<IN>);

Operation is as follows:

• DATE_TO_STRING converts the value represented by the input variable
and stores the result as a STRING data type in the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the DATE_TO_STRING operation:
DATE_TO_STRING(DT#2000-12-25:06:00:00) returns the string 'DT#2000-12-25-
06:00:00'

DATE_TO_STRING(DATE#2000-12-25) returns the string 'DATE#2000-12-
25'

DATE_TO_STRING(TOD#18:00:00) returns the string 'TOD#18:00:00'

Other Conversion Functions

Parameter Type Description
IN ANY_DATE Contains the date value to convert.

Any value, variable, or expression that
resolves to an ANY_DATE data type (DT, DATE,
TOD).

OUT STRING Contains the result of the conversion.
A variable (STRING data type).

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
INT_TO_BCD INT_TO_REAL INT_TO_STRING
REAL_TO_DATE REAL_TO_INT REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

48 Chapter 1
DELETE
The DELETE function deletes characters from the middle of an input string
and stores the result into an output string.

Graphical representation:

Structured text syntax:
<OUT> := DELETE (IN:= <IN>, L:= <L>, P:= <P>);

Operation is as follows:

• DELETE deletes the characters, beginning at position P, up to L
characters.

• DELETE stores the resulting string to output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function. Possible errors include a negative value in the Length
field.

Example of the DEL operation:

DELETE('CDBROWN', 2, 4) returns 'CDBWN'

Parameter Type Description
IN STRING Contains the string with characters to be

deleted.
Any valid STRING character or STRING
variable.

L ANY_INT Specifies the number of characters to delete.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

P ANY_INT Specifies the position within the string to begin
deleting characters. For the first character in
IN, P = 1.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

OUT STRING Contains the string after the characters have
been deleted.
Any STRING variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 49
Other String Function Blocks

CONCAT FIND INSERT
LEFT LEN MID
MSGWND REPLACE RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

50 Chapter 1
DELETEFILE
The DELETEFILE function deletes a file. The DELETEFILE is one of eight
functions that do file operations. Note that these function blocks are not
designed for high-speed I/O execution or data transfers of large blocks of
information.

Graphical representation:

Structured text syntax:
DELETEFILE (FCB:= <file control block name>,IN:=

<filename>);

Parameter Type Description
File Control
Block Name

FILE Name of the file control block that handles
operations for this file.

File Name STRING Name of the file to be deleted. The default path
is the same as for the runtime engine.
Any STRING constant or variable.

BUSY ¹ BOOL Indicates the file control block is busy.
Any BOOL constant or variable.

OPEN ¹ BOOL Indicates the file has been opened.
Any BOOL constant or variable.

EFLAG ¹ BOOL Indicates a file operation error has occurred.
Any BOOL constant or variable.

ERR ¹ ANY_INT Contains error code if a file operation error
occurs.
Any SINT, INT, DINT, BYTE, WORD, DWORD
variable.

1 Entries in the output fields are optional. However, for each field there is a
default file control variable. As you design your program, you must use
these output variables to handle file control. These fields reflect outputs
in the specified file control block and are not actual parameters to the
DELETEFILE function. For a detailed description of the file control
variables, see "CLOSEFILE."
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 51
Operation is as follows.

• DELETEFILE deletes the file that you specify in the File Name field.

• The file control variables handle access to the file and error conditions, as
described for the "CLOSEFILE" function. All file functions that operate
on the same file must use the same File Control Block name.

• If an error occurs, the file error variable is set to TRUE and a message
appears in the Output window and the Wonderware Logger. Attempting to
delete an open file generates an error (error code 27). For a complete list
of the error codes, the "CLOSEFILE" function.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can do only one file operation for each File Control Block at a time. Note
that file control I/O operations take place asynchronously to program
execution.

Example of the DELETEFILE function:
DELETEFILE (FCB:= datrpt IN:= "datareport");

The system deletes the file called datareport.

Other File Function Blocks

CLOSEFILE COPYFILE DIV
NEWFILE OPENFILE READFILE
REWINDFILE WRITEFILE
Wonderware InControl™ Function and Function Block Reference User’s Guide

52 Chapter 1
DIV
The DIV function divides one input value by another.

Graphical representation:

Structured text syntax:

<OUT> := <IN1> / <IN2>;

Operation is as follows:

• DIV divides IN1 by IN2, stores the quotient to the output variable OUT.

• If the value of IN2 equals zero, IN2 is set to 1 and the runtime engine
system variable RTEngine.DivideZero is set to TRUE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can also use this function with arrays. For example, you can divide every
element in an array by a number with the following line:

Array1 := Array2 / 9;

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Parameter Type Description
IN1 ANY_NUM

ANY_BIT ¹

Contains the dividend.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

IN2 ANY_NUM
ANY_BIT ¹

Contains the divisor.
Any non-zero SINT, INT, DINT, REAL, LREAL,
BYTE, WORD, DWORD constant or variable.

OUT ANY_NUM
ANY_BIT ¹

Contains the quotient of the division of IN1 by
IN2.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD variable.

1 BOOL data types are not allowed.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 53
Other Math Functions

ABS ADD EXPT
MAX MIN MOD
MOVE MUL NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

54 Chapter 1
EQ
The EQ function block tests whether one input is equal to another input.

Graphical representation:

Structured text syntax:
<OUT> := (<IN1> = <IN2>);

Operation is as follows:

• EQ compares IN1 to IN2. If IN1 is equal to IN2, EQ sets the output
variable OUT to TRUE. Otherwise, EQ sets OUT to FALSE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute.

Note In general, it is recommended that you avoid doing a comparison for
equality (or non-equality) with real numbers. If you do this type of comparison
using a constant (literal) value and a real variable, the variable must be an
LREAL data type to help ensure that you receive the expected result.

Other Comparison Function Blocks

Parameter Type Description
IN1 ANY Contains first value to be compared.

Any data type.
IN2 ANY Contains second value to be compared.

Any data type.
OUT BOOL TRUE indicates the values are equal. FALSE

indicates the values are not equal.
Any BOOL variable.

GE GT LE
LT NE
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 55
EXP
The EXP function block calculates the natural log exponentiation of the input
(raises e to the power of the input).

Graphical representation:

Structured text syntax:
<OUT> := EXP (<IN>);

Operation is as follows:

• If the input is within the range of the selected data type, EXP calculates e
to the power of IN, stores the result to the output variable OUT.

• If an error occurs, zero is written to the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the EXP function:

EXP(1) returns the value of e (2.7128...)

Other Trig/Log Function Blocks

Parameter Type Description
IN ANY_REAL Contains the value used as the exponent for e.

Any REAL or LREAL constant or variable.
OUT ANY_REAL Contains the result of e raised to the power of

IN.
Any REAL or LREAL variable.

ACOS ASIN ATAN
COS LN LOG
SIN TAN
Wonderware InControl™ Function and Function Block Reference User’s Guide

56 Chapter 1
EXPT
The EXPT function block raises a value to the power specified by a second
value.

Graphical representation:

Structured text syntax:
<OUT> := (<IN1> ** <IN2>);

Operation is as follows:

• EXPT calculates IN1 raised to the power of IN2, stores the result to the
output variable OUT.

• For the specific case in which both IN1 and IN2 equal zero, OUT equals
one.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

• If an error occurs, zero is written to the output variable OUT.

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Examples of the EXPT operation:

Parameter Type Description
IN1 ANY_NUM Contains the value to be raised to the power of

IN2.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

IN2 ANY_NUM Contains the value used as the exponent for
IN1.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

OUT ANY_NUM Contains the result of IN1 raised to the power
of IN2.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 57
Other Math Functions

ABS ADD DIV
MAX MIN MOD
MOVE MUL NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

58 Chapter 1
F_TRIG
The F_TRIG function block sets an output to TRUE for one scan when the
input to the function block transitions from TRUE to FALSE.

Graphical representation:

Structured text syntax:
<F_TRIG Name> (CLK:= <CLK>, Q:= <Q>);

Operation is as follows:

• When the input to the F_TRIG, which is from the clock, transitions from
TRUE to FALSE, the F_TRIG sets output Q to TRUE for one scan.

You can use the F_TRIG input and output in any expression, contact or coil
instead of a symbol of the same type. To reference an F_TRIG input or output,
enter the function block name followed by a period and the specific input or
output suffix. For example, F_TRIG1.CLK refers to the clock input of
F_TRIG1.

Other Trigger Function Blocks

Parameter Type Description
F_TRIG
Name

F_TRIG Unique name for the function block.

CLK BOOL Enables the function block output Q when
CLK transitions from TRUE to FALSE.
Any BOOL variable (or rung input).

Q BOOL Output is set to TRUE when CLK transitions
from TRUE to FALSE.
Any BOOL variable (or rung output).

ABORT_ALL R_TRIG
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 59
FIND
The FIND function block searches for a string of characters within another
string.

Graphical representation:

Structured text syntax:
<OUT> := FIND (IN1:= <IN1>, IN2:= <IN2>);

Operation is as follows:

• FIND searches string IN1 for a match of the string of characters in string
IN2. FIND is case sensitive.

• If a match is found, FIND stores the starting character position of IN2
within IN1 to output variable OUT. The first character position is number
1.

• If IN2 is not found, zero is stored to OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Examples of the FIND operation:

FIND('CDBROWN', 'BR') returns 3

FIND('CDBROWN', 'SMITH') returns 0

Other String Function Blocks

Parameter Type Description
IN1 STRING Contains the string of characters to be

searched.
Any valid STRING character or variable.

IN2 STRING Contains the string of characters for which a
match is to be found.
Any valid STRING character or variable.

OUT ANY_INT Contains the result of the search.
Any SINT, INT, DINT, BYTE, WORD, DWORD
variable.

CONCAT DELETE INSERT
LEFT LEN MID
MSGWND REPLACE RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

60 Chapter 1
GE
The GE function tests whether one input is greater than or equal to another
input.

Graphical representation:

Structured text syntax:
<OUT> := (<IN1> >= <IN2>);

Operation is as follows:

• GE compares IN1 to IN2. If IN1 is greater than or equal to IN2, GE sets
the output variable OUT to TRUE. Otherwise, the system sets OUT to
FALSE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute.

Note In general, it is recommended that you avoid doing a comparison for
equality (or non-equality) with real numbers. If you do this type of comparison
using a constant (literal) value and a real variable, the variable must be an
LREAL data type to help ensure that you receive the expected result.

Other Comparison Functions

Parameter Type Description
IN1 ANY Contains first value to be compared.

Any data type.
IN2 ANY Contains second value to be compared.

Any data type.
OUT BOOL TRUE indicates IN1 is greater than or equal to

than IN2.
FALSE indicates IN1 is less than IN2.
Any BOOL variable.

EQ GT LE
LT NE
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 61
GT
The GT function block tests whether one input is greater than another input.

Graphical representation:

Structured text syntax:
<OUT> := (<IN1> > <IN2>);

Operation is as follows:

• The system compares IN1 to IN2. If IN1 is greater than IN2, GT sets the
rung output variable OUT to TRUE. Otherwise, GE sets OUT to FALSE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute.

Other Comparison Functions

Parameter Type Description
IN1 ANY Contains first value to be compared.

Any data type.
IN2 ANY Contains second value to be compared.

Any data type.
OUT BOOL TRUE indicates IN1 is greater than IN2.

FALSE indicates IN1 is less than or equal to
IN2.
Any BOOL variable.

EQ GE LE
LT NE
Wonderware InControl™ Function and Function Block Reference User’s Guide

62 Chapter 1
INSERT
The INS function block inserts a string input into another string.

Graphical representation:

Structured text syntax:
<OUT> := INSERT (IN1:= <IN1>, IN2:= <IN2> , P:= <P>);

Operation is as follows:

• INSERT inserts string IN2 into string IN1 at the position specified by
position P.

• INSERT stores the result of the insertion into output variable OUT, and
sets the ENO to TRUE.

• If the value of P is negative, or if the sum of the lengths of the two strings
is greater than 2048, OUT is set to an empty string. If P is greater than the
length of the string, the strings are concatenated.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the INS operation when P = 4:

INSERT('BROWN', 'CD', 4) returns 'BROWCDN'

Example of the INS operation when P = 0:

INSERT('BROWN', 'CD', 0) returns 'CDBROWN'

Parameter Type Description
IN1 STRING Contains the string of characters into which

another string is to be inserted.
Any valid STRING character or variable.

IN2 STRING Contains the string of characters that is to be
inserted into IN1.
Any STRING character or variable.

P ANY_INT Specifies the character position of IN1 after
which IN2 is inserted. To insert IN2 before the
first character in IN1, set P = 0.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

OUT STRING Contains the result of the string insertion.
Any valid STRING variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 63
Other String Functions

CONCAT DELETE FIND
LEFT LEN MID
MSGWND REPLACE RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

64 Chapter 1
INT_TO_BCD
The INT_TO_BCD function converts an integer value to the equivalent
Binary-Coded Decimal (BCD) representation of the value.

Graphical representation:

Structured text syntax:
<OUT> := INT_TO_BCD (<IN>);

Operation is as follows:

• INT_TO_BCD converts the integer input to its BCD representation.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the INT_TO_BCD function.

INT_TO_BCD(10#321) returns 16#321

Other Conversion Functions

Parameter Type Description
IN ANY_INT Contains the value to convert.

An ANY_INT variable data type (SINT, INT,
DINT, BYTE, WORD, DWORD).

OUT ANY_INT Contains the result of the conversion.
A BCD number, variable or expression that
resolves to an ANY_INTdata type (SINT, INT,
DINT, BYTE, WORD, DWORD).

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_REAL INT_TO_STRING
REAL_TO_DATE REAL_TO_INT REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 65
INT_TO_REAL
The INT_TO_REAL function converts an ANY_INT input to an ANY_REAL
value.

Graphical representation:

Structured text syntax:
<OUT> := INT_TO_REAL (<IN>);

Operation is as follows:

• INT_TO_REAL converts the integer input and stores it as an LREAL data
type in the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the INT_TO_REAL function.

INT_TO_REAL(4) returns 4.0.

Other Conversion Functions

Parameter Type Description
IN ANY_INT Contains the value to convert.

An ANY_INT variable data type (SINT, INT,
DINT, BYTE, WORD, DWORD).

OUT ANY_REAL Contains the result of the conversion.
An ANY_REAL data type (REAL, LREAL).

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_STRING
REAL_TO_DATE REAL_TO_INT REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

66 Chapter 1
INT_TO_STRING
The INT_TO_STRING function converts an ANY_INT input to a string.

Graphical representation:

Structured text syntax:
<OUT> := INT_TO_STRING (<IN>);

Operation is as follows:

• INT_TO_STRING converts the integer input and stores it as a STRING
data type in the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the INT_TO_STRING function.

INT_TO_STRING(4) returns the string '4'

Other Conversion Functions

Parameter Type Description
IN ANY_INT Contains the value to convert.

An ANY_INT variable data type (SINT, INT,
DINT, BYTE, WORD, DWORD).

OUT STRING Contains the result of the conversion.
A variable (STRING data type).
Any BOOL variable.

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
REAL_TO_DATE REAL_TO_INT REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 67
LE
The LE function tests whether one input is less than another input.

Graphical representation:

Structured text syntax:
<OUT>:=(<IN1> <= <IN2>);

Operation is as follows:

• LE compares IN1 to IN2. If IN1 is less than or equal to IN2, LE sets the
output variable OUT to TRUE. Otherwise, LE sets OUT to FALSE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute.

Note In general, it is recommended that you avoid doing a comparison for
equality (or non-equality) with real numbers. If you do this type of comparison
using a constant (literal) value and a real variable, the variable must be an
LREAL data type to help ensure that you receive the expected result.

Other Comparison Functions

Parameter Type Description
IN1 ANY Contains first value to be compared.

Any data type.
IN2 ANY Contains second value to be compared.

Any data type.
OUT BOOL TRUE indicates IN1 is less than or equal to

than IN2.
FALSE indicates IN1 is greater than IN2.
Any BOOL variable.

EQ GE GT
LT NE
Wonderware InControl™ Function and Function Block Reference User’s Guide

68 Chapter 1
LEFT
The LEFT function creates a string of characters from a specified number of
the leftmost characters of another string of characters.

Graphical representation:

Structured text syntax:
<OUT> := LEFT (IN:= <IN> , L:= <L>);

Operation is as follows:

• LEFT copies the number of characters specified by L, starting from the
left end of a string specified by IN, to the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function. Possible errors include a negative value in the L field.

Example of the LEFT operation:

LEFT('BROWN', 2) returns 'BR'

Other String Functions

Parameter Type Description
IN STRING Contains string from which characters are

copied.
Any valid STRING character or variable.

L ANY_INT Specifies the number of characters to copy.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

OUT STRING Contains the new string of characters.
Any valid STRING variable.

CONCAT DELETE FIND
INSERT LEN MID
MSGWND REPLACE RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 69
LEN
The LEN function stores the length of a string.

Graphical representation:

Structured text syntax:
<OUT> := LEN (<IN>);

Operation is as follows:

• LEN determines the length of the string specified in IN, and stores the
result to the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

The following is an example of the LEN operation:

LEN('BROWN') returns 5

Other String Functions

Parameter Type Description
IN STRING Contains the string for which the length is

stored.
Any valid STRING character or variable.

OUT ANY_INT Contains the integer length of the string.
Any valid SINT, INT, DINT, BYTE, WORD,
DWORD variable.

CONCAT DELETE FIND
INSERT LEFT MID
MSGWND REPLACE RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

70 Chapter 1
LN
The LN function calculates the natural logarithm of the input.

Graphical representation:

Structured text syntax:
<OUT> := LN (<IN>);

Operation is as follows:

• LN calculates the natural log of IN, stores the result to the output variable
OUT, and sets the rung output ENO to TRUE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the LN function:

LN(e) returns 1 where e is 2.7128...

Other Trig/Log Functions

Parameter Type Description
IN ANY_REAL Contains the value for which the natural

logarithm is calculated.
Any REAL or LREAL constant or variable.

OUT ANY_REAL Contains the natural logarithm of IN.
Any REAL or LREAL variable.

ACOS ASIN ATAN
COS EXP LOG
SIN TAN
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 71
LOG
The LOG function calculates the base 10 logarithm of the input.

Graphical representation:

Structured text syntax:
<OUT> := LOG (<IN>);

Operation is as follows:

• LOG calculates the base 10 logarithm of IN, stores the result to the output
variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the LOG function:

LOG(10) returns 1

Other Trig/Log Functions

Parameter Type Description
IN ANY_REAL Contains the value for which the logarithm is

calculated.
Any REAL or LREAL constant or variable.

OUT ANY_REAL Contains the logarithm of IN.
Any REAL or LREAL variable.

ACOS ASIN ATAN
COS EXP LN
SIN TAN
Wonderware InControl™ Function and Function Block Reference User’s Guide

72 Chapter 1
LT
The LT function tests whether one input is less than another input.

Graphical representation:

Structured text syntax:
<OUT> := (<IN1> < <IN2>);

Operation is as follows: OUT := (IN1 < IN2)

• LT compares IN1 to IN2. If IN1 is less than IN2, LT sets the output
variable OUT to TRUE. Otherwise, LT sets OUT to FALSE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute.

Other Comparison Functions

Parameter Type Description
IN1 ANY Contains first value to be compared.

Any data type.
IN2 ANY Contains second value to be compared.

Any data type.
OUT BOOL TRUE indicates IN1 is less than IN2.

FALSE indicates IN1 is greater than or equal
to IN2.
Any BOOL variable.

EQ GE GT
LE NE
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 73
MAX
The MAX function determines the larger of two values.

Graphical representation:

Structured text syntax:
<OUT> := MAX (<IN1> , <IN2>);

Operation is as follows:

• MAX compares IN1 to IN2 and stores the larger value in the output
variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function. Possible errors include a negative value in the L field.

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Example of the MAX function:

MAX(5.4, 9.0) returns 9.0

Other Math Functions

Parameter Type Description
IN1 ANY Contains first value to be compared.

Any numbers, variables, or expressions that
resolve to an ANY data type except FILE, TMR,
and User-Defined.

IN2 ANY Contains second value to be compared.
Any numbers, variables, or expressions that
resolve to an ANY data type except FILE, TMR,
and User-Defined.

OUT ANY Contains the larger value.
An ANY variable data type except FILE, TMR,
and User-Defined.

ABS ADD DIV
EXPT MIN MOD
MOVE MUL NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

74 Chapter 1
MID
The MID function creates a string of characters from a specified number of
characters from the middle of another string.

Graphical representation:

Structured text syntax
<OUT> := MID (IN:= <IN>, L:= <L> , P:= <P>);

Operation is as follows:

• MID copies the number of characters specified by L and beginning at
position P to the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function. Possible errors include a negative value in the L field
or if the value for P falls outside the string.

Example of the MID operation:

MID('BROWN', 2, 4) returns 'WN'

Other String Functions

Parameter Type Description
IN STRING Contains string from which characters are

copied.
Any valid STRING character or variable.

L ANY_INT Specifies the number of characters to copy.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

P ANY_INT Specifies the position within the string to begin
copying characters.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

OUT STRING Contains the new string of characters.
Any valid STRING variable.

CONCAT DELETE FIND
INSERT LEFT LEN
MSGWND REPLACE RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 75
MIN
The MIN function determines the smaller of two values.

Graphical representation:

Structured text syntax:
<OUT> := MIN (<IN1> , <IN2>);

Operation is as follows:

• MIN compares IN1 to IN2 and stores the smaller value in the output
variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the MIN function:

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

MIN(5.4, 9.0) returns 5.4

Other Math Functions

Parameter Type Description
IN1 ANY Contains first value to be compared.

Any numbers, variables, or expressions that
resolve to an ANY data type except FILE, TMR,
and User-Defined.

IN2 ANY Contains second value to be compared.
Any numbers, variables, or expressions that
resolve to an ANY data type except FILE, TMR,
and User-Defined.

OUT ANY Contains the smaller value.
An ANY variable data type except FILE, TMR,
and User-Defined.

ABS ADD DIV
EXPT MAX MOD
MOVE MUL NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

76 Chapter 1
MOD
The MOD function divides one input value by another and stores the
remainder of the division (modulus) to the output.

Graphical representation:

Structured text syntax:
<OUT> := (<IN1> MOD <IN2>);

Operation is as follows:

• If the two inputs IN1and IN2 are within the range of the selected data
types, MOD divides IN1 by IN2, stores the modulus to the output variable
OUT.

• If the value of IN2 equals zero, IN2 is set to 1 and the runtime engine
system variable RTEngine.DivideZero is set to TRUE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Example of the MOD function:

MOD(42, 10) returns 2

Parameter Type Description
IN1 ANY_NUM

ANY_BIT ¹

Contains the dividend.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

IN2 ANY_NUM
ANY_BIT ¹

Contains the divisor.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

OUT ANY_NUM
ANY_BIT ¹

Contains modulus of division of IN1 by IN2.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD variable.

1 BOOL data types are not allowed.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 77
Other Math Functions

ABS ADD DIV
EXPT MAX MIN
MOVE MUL NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

78 Chapter 1
MOVE
The MOVE function converts the input to the same data type as the output and
copies the result to the output.

Graphical representation:

Structured text syntax:

<OUT> := <IN>);

Operation is as follows:

• MOVE converts the input IN to the same data type as the output, copies
the result to the output variable OUT.

• The contents of IN are not affected by the operation.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Note Moving structures and arrays is possible although this type of operation
may be lengthy, depending on the size of the structure or array.

To move a structure (Structure1:= Structure2), the size and data types of the
structure members must match exactly. No data type conversion is supported
for complex moves.

To move an array (Array1:= Array2), the size and data types of the array
elements must match exactly. Each element of Array2 is moved to a
corresponding element in Array1.

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Parameter Type Description
IN ANY Contains the value to be copied.

Any data type.
OUT ANY Contains the destination of the copy operation.

Any data type.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 79
Other Math Functions

ABS ADD DIV
EXPT MAX MIN
MOD MUL NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

80 Chapter 1
MSGWND
The MSGWND function block displays a message in the Output window and
the Wonderware Logger.

Graphical representation:

Structured text syntax:
MSGWND (IN1:= <IN1> , IN2:= <IN2>);

Operation is as follows:

• MSGWND displays the contents of IN1 and IN2 in the Output window
and the Wonderware Logger. The runtime engine monitor icon displays
the yellow warning diamond:

• The EN BOOL parameter is used only in the graphical languages to enable
the function block to execute. ENO follows EN unless an error condition
occurs within the function block.

Example of the MSGWND operation:
MSGWND (‘Open Valves’, Phase);

The following figure shows the Output window when the Phase is ’Drain
Phase.’

Parameter Type Description
FBN INT Unique number for the function block.
IN1 STRING Contains the message to be displayed,

enclosed in single quotation marks.
Any valid STRING character code or variable
containing valid character codes.

IN2 STRING Contains the title of the message, enclosed in
single quotation marks.
Any valid STRING character code or variable
containing valid character codes.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 81
Other String Functions

CONCAT DELETE FIND
INSERT LEFT LEN
MID REPLACE RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

82 Chapter 1
MUL
The MUL function multiplies two input values.

Graphical representation:

Structured text syntax:
<OUT> := <IN1> * <IN2>

Operation is as follows:

• MUL multiplies IN1 and IN2 and stores the product to the output variable
OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can also use this function with arrays. For example, you can multiply
every element in an array by a number with the following line:

Array1 := Array2 * 9;

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Other Math Functions

Parameter Type Description
IN1 ANY_NUM

ANY_BIT ¹

Contains the first value to be multiplied.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

IN2 ANY_NUM
ANY_BIT ¹

Contains the second value to be multiplied.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

OUT ANY_NUM
ANY_BIT ¹

Contains the product of the multiplication of
IN1 and IN2.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD variable.

1 BOOL data types are not allowed.

ABS ADD DIV
EXPT MAX MIN
MOD MOVE NEG
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 83
NE
The NE function tests whether one input is not equal to another input.

Graphical representation:

Structured text syntax:
<OUT> := (<IN1> <> <IN2>);

Operation is as follows:

• NE compares IN1 to IN2. If IN1 is not equal to IN2, NE sets output
variable OUT to TRUE. Otherwise, NE sets OUT to FALSE.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute.

Note In general, it is recommended that you avoid doing a comparison for
equality (or non-equality) with real numbers. If you do this type of comparison
using a constant (literal) value and a real variable, the variable must be an
LREAL data type to help ensure that you receive the expected result.

Other Comparison Function Blocks

Parameter Type Description
IN1 ANY Contains first value to be compared.

Any data type.
IN2 ANY Contains second value to be compared.

Any data type.
OUT BOOL TRUE indicates the values are not equal.

FALSE indicates the values are equal.
Any BOOL variable.

EQ GE GT
LE LT
Wonderware InControl™ Function and Function Block Reference User’s Guide

84 Chapter 1
NEG
The NEG function changes the sign of an input.

Graphical representation:

Structured text syntax:
<OUT> := -<IN1>);

Operation is as follows:

• NEG changes the sign of input IN and stores the result to the output
variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Examples of the NEG operation:

NEG(-4) returns 4

NEG(4) returns -4

Other Math Functions

Parameter Type Description
IN ANY_NUM Contains the value to be negated.

Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

OUT ANY_NUM Contains the negated value of IN.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD variable.

ABS ADD DIV
EXPT MAX MIN
MOD MOVE MUL
SQRT SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 85
NEWFILE
The NEWFILE function creates a new file. The NEWFILE is one of eight
functions that do file operations. Note that these functions are not designed for
high-speed I/O execution or data transfers of large blocks of information.

Graphical representation:

Structured text syntax:
NEWFILE (FCB:= <file control block name>, FILE:=

<filename>);

Parameter Type Description
File Control
Block Name

FILE Name of the file control block that handles
operations for this file.

File Name STRING Name of the file to be created. The default
path is the same as for the runtime engine
(RTEngine.exe). If you need to specify a
different path, do not use a UNC (Universal
Naming Convention) name. UNC is not
supported.
Any valid STRING constant or variable.

BUSY ¹ BOOL Indicates the file control block is busy.
Any BOOL variable.

OPEN ¹ BOOL Indicates the file has been opened.
Any BOOL variable.

EFLAG ¹ BOOL Indicates a file operation error has occurred.
Any BOOL variable.

ERR ¹ ANY_INT Contains the error code if a file operation error
occurs.
Any SINT, INT, DINT, BYTE, WORD, DWORD
variable.

1 Entries in the output fields are optional. However, for each field there is a
default file control variable. As you design your program, you must use
these output variables to handle file control. These fields reflect outputs in
the specified file control block and are not actual parameters to the NEWFILE
function. For a detailed description of the file control variables, see
"CLOSEFILE."
Wonderware InControl™ Function and Function Block Reference User’s Guide

86 Chapter 1
Operation is as follows.

• NEWFILE creates the file and assigns it the name that you specify in the
File Name field. If a file of the same name already exists, NEWFILE
overwrites it. If a file being handled by the file control block is already
open, NEWFILE closes the first file and creates the second.

• The file control variables handle access to the file and error conditions, as
described for the "CLOSEFILE" function. The three input file control
variables are of particular importance when files are opened. You need to
verify whether their default values are appropriate for your application.
All file function blocks that operate on the same file must use the same
File Control Block name.

• If an error occurs, the file error variable is set to TRUE and a message
appears in the Output window and the Wonderware Logger. The graphical
output ENO is set to FALSE. For a complete list of the error codes, see
"CLOSEFILE."

You can do only one file operation for each File Control Block at a time. Note
that file control I/O operations take place asynchronously to program
execution.

For an example that uses the NEWFILE with several other File procedures, see
"WRITEFILE."

Other File Functions

CLOSEFILE COPYFILE DELETEFILE
OPENFILE READFILE REWINDFILE
WRITEFILE
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 87
NOT
The NOT function does a bit-by-bit inversion of an input.

Graphical representation:

Structured text syntax:
<OUT> := NOT <IN>;

Operation is as follows:

• NOT examines input IN bit by bit and inverts each bit.

• NOT stores the result to the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can also use this function with arrays as shown in the example below.

Examples of the NOT operation:

NOT 2#0011 returns 2#1100

NOT TRUE returns FALSE

Array1 := NOT Array2;

Other Bitwise Functions

Parameter Type Description
IN ANY_BIT Contains the value to be inverted. Any BOOL,

BYTE, WORD, DWORD constant or variable.
OUT ANY_BIT Contains the inverted value of IN. Any BOOL,

BYTE, WORD, DWORD constant or variable.

AND OR ROL
ROR SHL SHR
XOR
Wonderware InControl™ Function and Function Block Reference User’s Guide

88 Chapter 1
OPENFILE
The OPENFILE function opens a file for operations, such as reading or
writing. The OPENFILE is one of eight function blocks that do file operations.
Note that these function blocks are not designed for high-speed I/O execution
or data transfers of large blocks of information.

Graphical representation:

Structured text syntax:
OPENFILE (FCB:= <file control block name>, FILE:=

<filename>);

Parameter Type Description
File Control
Block Name

FILE Name of the file control block that handles
operations for this file.

File Name STRING Name of the file to be opened. The default path
is the same as for the runtime engine
(RTEngine.exe). If you need to specify a
different path, do not use a UNC (Universal
Naming Convention) name. UNC is not
supported.
Any valid STRING constant or variable.

BUSY ¹ BOOL Indicates the file control block is busy.
Any BOOL variable.

OPEN ¹ BOOL Indicates the file has been opened.
Any BOOL variable.

EFLAG ¹ BOOL Indicates a file operation error has occurred.
Any BOOL variable.

ERR ¹ ANY_INT Contains the error code if a file operation error
occurs.
Any SINT, INT, DINT, BYTE, WORD, DWORD
variable.

1 Entries in the output fields are optional. However, for each field there is a
default file control variable. As you design your program, you must use
these output variables to handle file control. These fields reflect outputs in
the specified file control block and are not actual parameters to the OPENFILE
function. For a detailed description of the file control variables, see
"CLOSEFILE."
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 89
Operation is as follows.

• OPENFILE opens the file that you specify in the File Name field. If the
file is already open, OPENFILE closes it first.

• The file control variables handle access to the file and error conditions, as
described for the "CLOSEFILE" function block. The three input file
control variables are of particular importance when files are opened. You
need to verify whether their default values are appropriate for your
application. All file function blocks that operate on the same file must use
the same File Control Block name.

• If an error occurs, the file error variable is set to TRUE and a message
appears in the Output window and the Wonderware Logger. The graphical
output ENO is set to FALSE. Attempting to open a non-existent file
generates an error (error code 18). If a file being handled by the file
control block is already open, OPENFILE closes the first and opens the
second. For a complete list of the error codes, see "CLOSEFILE."

You can do only one file operation for each File Control Block at a time. Note
that file control I/O operations take place asynchronously to program
execution.

The following is an example of the OPENFILE procedure.
OPENFILE (FCB:= "datrpt", FILE:= "data_report");

The system opens the file called data_report.

Other File Functions

CLOSEFILE COPYFILE DELETEFILE
NEWFILE READFILE REWINDFILE
WRITEFILE
Wonderware InControl™ Function and Function Block Reference User’s Guide

90 Chapter 1
OR
The OR function does a bitwise logical OR of two values.

Graphical representation:

Structured text syntax:
<OUT> := <IN1> OR <IN2>;

Operation is as follows:

• OR does a logical OR of each bit of the two inputs IN1and IN2.

• OR stores the result of the OR operation to the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can also use this function with arrays as shown in the examples below.

Examples of the OR operation:

2#0011 OR 2#0101 returns 2#0111

TRUE OR FALSE returns TRUE

Array1 := Array2 OR #16FFFE;

Array1 := Array1 OR Array2;

Other Bitwise Functions

Parameter Type Description
IN1 ANY_BIT Contains the first value to be ORed.

Any BOOL, BYTE, WORD, DWORD constant
or variable.

IN2 ANY_BIT Contains the second value to be ORed.
Any BOOL, BYTE, WORD, DWORD constant or
variable.

AND NOT ROL
ROR SHL SHR
XOR
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 91
R_TRIG
The R_TRIG function block sets an output to TRUE when the input to the
function block transitions from FALSE to TRUE.

Graphical representation:

Structured text syntax:
<R_TRIG Name> (CLK:= <CLK>, Q:= <Q>);

Operation is as follows.

• When the input to the R_TRIG, which is from the clock, transitions from
FALSE to TRUE, the R_TRIG sets output Q to TRUE for one scan.

You can use the R_TRIG input and output in any expression, contact or coil
instead of a symbol of the same type. To reference an R_TRIG input or output,
enter the function block name followed by a period and the specific input or
output suffix. For example, R_TRIG1.Q refers to the output of R_TRIG1.

Other Trigger Function Blocks

Parameter Type Description
R_TRIG
Name

R_TRIG Unique name for the function block.

CLK BOOL Enables the function block output Q when
CLK transitions from FALSE to TRUE.
Any BOOL variable (or rung input).

Q BOOL Output is set to TRUE when CLK transitions
from FALSE to TRUE.
Any BOOL variable (or rung input).

ABORT_ALL F_TRIG
Wonderware InControl™ Function and Function Block Reference User’s Guide

92 Chapter 1
READFILE
The READFILE function reads data from a file and stores it in a variable of a
user-defined data type. The READFILE is one of eight function blocks that do
file operations. Note that these function blocks are not designed for high-speed
I/O execution or data transfers of large blocks of information.

Graphic representation:

Structured text syntax:
READFILE (FCB:=<file control block name>,

OUT:=<variable>,[F:=<fieldsep>],[S:=<stringsep>],[T:=<e
ol>]);

Parameter Type Description
File Control
Block Name

FILE Name of the file control block that handles
operations for this file.

Variable USER-
DEFINED

Name of the user-defined data type variable to
which the file data is stored.
Any user-defined data type. If only one value
needs to be read or written, you can use a
variable of type ANY.

Fieldsep ¹ STRING String character used to separate fields in the
file. If you create the file using another
application, such as a text editor instead of
WRITEFILE, be sure to use field separators
between values.
Any valid STRING character. The default is
the space character.

Stringsep ¹ STRING String character used to delimit the strings in
the file. The string delimiter is not required.
However, if you create the file using another
application, such as a text editor instead of the
WRITEFILE, be sure that the data is formatted
so that READFILE reads it correctly.
Any valid STRING character. The default is
the double-quotation mark character.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 93
You also need to create a user-defined data type using a data structure
appropriate for the data read from the file.

Operation is as follows.

• The OPENFILE or the NEWFILE must open the file before the
READFILE can read it.

• READFILE reads the file that is associated with the file control block.

• READFILE stores the data to the user-defined variable.

• The file control variables handle access to the file and error conditions, as
described for the "CLOSEFILE" function block. The three input file
control variables are of particular importance when files are opened. You
need to verify whether their default values are appropriate for your
application. All file function blocks that operate on the same file must use
the same File Control Block name.

• If an error occurs, the file error variable is set to TRUE and a message
appears in the Output window and the Wonderware Logger. The graphical
output ENO is set to FALSE. For a complete list of the error codes, see
"CLOSEFILE."

EOL ¹ STRING String character used to indicate the end of a
line in the file. InControl treats the EOL
delimiter as a field separator. This allows the
READFILE to read from more than one line at
a time. However, as a field separator, the EOL
character prevents your starting a value on one
line and continuing it on the next.
Valid values: any valid STRING character.
The default is the new line character.

BUSY ² BOOL Indicates the file control block is busy.
Any BOOL variable.

OPEN ² BOOL Indicates the file has been opened.
Any BOOL variable.

EFLAG ² BOOL Indicates a file operation error has occurred.
Any BOOL variable.

ERR ² ANY_INT Contains the error code if a file operation error
occurs.
Any SINT, INT, or DINT, BYTE, WORD,
DWORD variable.

1 Choose delimiters carefully to avoid conflicts with string characters
contained within the file. See "WRITEFILE" for more information.

2 Entries in the output fields are optional. However, for each field there is a
default file control variable. As you design your program, use these
output variables to handle file control. These fields reflect outputs in the
specified file control block and are not actual parameters to the
READFILE function. For a detailed description of the file control
variables, see "CLOSEFILE."

Parameter Type Description
Wonderware InControl™ Function and Function Block Reference User’s Guide

94 Chapter 1
Note that the WRITEFILE writes data of the TIME, DATE, DT, and TOD data
types in STRING format instead of number format. The READFILE can read
this data format, provided it is formatted correctly following the IEC-61131
specification.

For an example that uses the READFILE with several other File procedures,
see "WRITEFILE."

Other File Functions

CLOSEFILE COPYFILE DELETEFILE
NEWFILE OPENFILE REWINDFILE
WRITEFILE
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 95
REAL_TO_DATE
The DATE_TO_REAL function converts an ANY_REAL input to a DATE value.

Graphical representation:

Structured text syntax:
<OUT> := REAL_TO_DATE (<IN>);

Operation is as follows:

• REAL_TO_DATE converts the value represented by the input variable and
stores the result as an ANY_DATE data type in the output variable.

The whole number portion of the real number represents the number of
days since December 30, 1899. The fractional part of the number
represents time of day.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Note To help ensure accuracy, use an LREAL data type for the input
parameter when converting to a DT data type.

Examples of the REAL_TO_DATE operation:

REAL_TO_DATE(36885.25) returns DT#2000-12-25-06:00:00

REAL_TO_DATE(36885) returns DATE#2000-12-25

REAL_TO_DATE(0.75) returns TOD#18:00:00

Parameter Type Description
IN ANY_REAL Contains the value to convert.

Any value, variable, or expression that resolves
to an ANY_REAL data type (REAL, LREAL).

OUT ANY_DATE Contains the result of the conversion.
An ANY_DATE data type (DT, DATE, TOD).
Wonderware InControl™ Function and Function Block Reference User’s Guide

96 Chapter 1
Other Conversion Functions

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 97
REAL_TO_INT
The REAL_TO_INT function converts an ANY_REAL input to an ANY_INT
value.

Graphical representation:

Structured text syntax:
<OUT> := REAL_TO_INT (<IN>);

Operation is as follows:

• REAL_TO_INT converts the value represented by the input variable and
stores the result as an ANY_INT data type in the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the REAL_TO_INT operation:

REAL_TO_INT(4.99) returns 4

Other Conversion Functions

Parameter Type Description
IN ANY_REAL Contains the data value to convert.

An ANY_REAL data type (REAL, LREAL).
OUT ANY_INT Contains the result of the conversion.

Any value, variable, or expression that
resolves to an ANY_INT data type (SINT, INT,
DINT, BYTE, WORD, DWORD).

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_STRING
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

98 Chapter 1
REAL_TO_STRING
The REAL_TO_STRING function converts an ANY_REAL input to a string.

Graphical representation:

Structured text syntax:
<OUT> := REAL_TO_STRING (<IN>);

Operation is as follows:

• REAL_TO_STRING converts the value represented by the input variable
and stores the result as a STRING data type in the output variable.

LREALs have up to 14 digits following the decimal point. REALs have up
to six digits following the decimal point.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the REAL_TO_STRING operation:

REAL_TO_STRING(1.12345678901234) returns '1.12345678901234')

Other Conversion Functions

Parameter Type Description
IN ANY_REAL Contains the data value to convert.

An ANY_REAL data type (REAL, LREAL).
OUT STRING Contains the result of the conversion.

A STRING variable data type.

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_TIME STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 99
REAL_TO_TIME
The REAL_TO_STRING function converts an ANY_REAL input to a TIME
value.

Graphical representation:

Structured text syntax:
<OUT> := REAL_TO_TIME (<IN>);

Operation is as follows:

• REAL_TO_TIME converts the value represented by the input variable and
stores the result as a TIME data type in the output variable.

The real number represents the time seconds.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the REAL_TO_TIME operation:

REAL_TO_TIME(64.5) returns T#1m4s500ms

Other Conversion Functions

Parameter Type Description
IN ANY_REAL Contains the data value to convert.

An ANY_REAL data type (REAL, LREAL).
OUT TIME Contains the result of the conversion.

Any TIME variable data type.

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING STRING_TO_ARRAY STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

100 Chapter 1
REPLACE
The REPLACE function replaces the specified number of characters in a string
with a set of characters from another string.

Graphical representation:

Structured text syntax:

<OUT>:=REPLACE(IN1:=<IN1> ,IN2:=<IN2> ,L:= <L> ,P:= <P>);

Operation is as follows:

• REPLACE replaces the number of characters specified by L in IN1 with
characters from IN2.

• REPLACE replaces characters starting at position P.

• After the characters are replaced, REPLACE stores the new string in
output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function. If an error occurs, e.g., L is not valid for the length of
the string, zero is stored to OUT.

Parameter Type Description
IN1 STRING Contains the string in which characters are

replaced.
Any valid STRING character or variable.

IN2 STRING Contains string from which the characters are
copied.
Any valid STRING character or variable.

L ANY_INT Specifies the number of characters to replace.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

P ANY_INT Specifies the position within the string to begin
replacing characters. If P specifies a position
outside the string, IN2 is concatenated to IN1.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

OUT STRING Contains the result of the character
replacement.
Any valid STRING variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 101
Example of the REPLACE operation:

REPLACE('BROWN', 'CD', 2, 3) returns 'BRCDN'

Other String Functions

CONCAT DELETE FIND
INSERT LEFT LEN
MID MSGWND RIGHT
Wonderware InControl™ Function and Function Block Reference User’s Guide

102 Chapter 1
REWINDFILE
The REWINDFILE function positions the internal file pointer to the beginning
of a file. The REWINDFILE is one of eight procedures that do file operations.
Note that these procedures are not designed for high-speed I/O execution, data
transfers of large blocks of information, or for control applications.

Graphical representation:

Structured text syntax:
REWINDFILE (<fcb>);

Operation is as follows.

• REWINDFILE rewinds the file that is associated with the control block,
specified in the File Control Block Name field.

• The file control variables handle access to the file and error conditions, as
described for the CLOSEFILE function block. All file function blocks that
operate on the same file must use the same File Control Block name.

Parameter Type Description
File Control
Block Name

FILE Name of file control block that handles
operations for this file.

BUSY ¹ BOOL Indicates the file control block is busy.
Any BOOL variable.

OPEN ¹ BOOL Indicates the file has been opened.
Any BOOL variable.

EFLAG ¹ BOOL Indicates a file operation error has occurred.
Any BOOL variable.

ERR ¹ ANY_INT Contains the error code if a file operation error
occurs.
Any SINT, INT, DINT, BYTE, WORD, DWORD
variable.

1 Entries in the output fields are optional. However, for each field there is a
default file control variable. As you design your program, you must use
these output variables to handle file control. These fields reflect outputs
in the specified file control block and are not actual parameters to the
REWINDFILE function. For a detailed description of the file control
variables, see "CLOSEFILE."
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 103
• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

• If an error occurs, the file error variable is set to TRUE and a message
appears in the Output window and the Wonderware Logger. The graphical
output ENO is set to FALSE. For a list of the error codes, see
"CLOSEFILE."

You can do only one file operation for each File Control Block at a time. Note
that file control I/O operations take place asynchronously to program
execution.

For an example that uses the REWINDFILE with several other File
procedures, see "WRITEFILE."

Other File Functions

CLOSEFILE COPYFILE DELETEFILE
NEWFILE OPENFILE READFILE
WRITEFILE
Wonderware InControl™ Function and Function Block Reference User’s Guide

104 Chapter 1
RIGHT
The RIGHT function creates a string of characters from a specified number of
the rightmost characters of another string of characters.

Graphical representation:

Structured text syntax:
<OUT> := RIGHT (IN:= <IN> , L:= <L>);

Operation is as follows:

• RIGHT copies the number of characters specified by L to the output
variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function. Possible errors include a negative value in the Length
field.

The following is an example of the RIGHT operation:

RIGHT('BROWN', 2) returns 'WN'

Other String Functions

Parameter Type Description
IN STRING Contains the string from which the characters

are copied.
Any valid STRING character or variable.

L ANY_INT Specifies the number of characters to copy.
Any SINT, INT, DINT, BYTE, WORD, DWORD
constant or variable.

OUT STRING Contains the new string of characters.
Any valid STRING variable.

CONCAT DELETE FIND
INSERT LEFT LEN
MID MSGWND REPLACE
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 105
ROL
The ROL function rotates the individual bits of an input a specified number of
positions to the left.

Graphical representation:

Structured text syntax:
<OUT> := ROL(IN:= <IN>, N:= <S>);

Operation is as follows:

• ROL examines IN in its binary form and then shifts each bit to the left by
the number of positions specified by N.

• The most significant bit shifts to the position of the least significant bit.

• ROL stores the result of the shift in the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function. Possible errors include a negative value in the N field.

You can also use this function with arrays as shown in the example below.

Example of the ROL operation:

When byte1 = 2#1111_0000

ROL(byte1) returns 2#1110_0001

Array1 := ROL(Array1,2);

Other Bitwise Functions

Parameter Type Description
IN ANY_BIT Contains the value in which bits are rotated.

Any BOOL, BYTE, WORD, DWORD constant
or variable.

N ANY_INT Specifies the number of bit positions to rotate.
Any SINT, INT, DINT constant or variable.

OUT ANY_BIT Contains the result of rotating the bits in IN.
Any BOOL, BYTE, WORD, DWORD constant
or variable.

AND NOT OR
ROR SHL SHR
XOR
Wonderware InControl™ Function and Function Block Reference User’s Guide

106 Chapter 1
ROR
The ROR function rotates the individual bits of an input a specified number of
positions to the right.

Graphical representation:

Structured text syntax:
<OUT> := ROR(IN:= <IN>, N:= <S>);

Operation is as follows:

• ROR examines input IN in its binary form and then shifts each bit to the
right by the number of positions specified by N.

• The least significant bit shifts to the position of the most significant bit.

• ROR stores the result of the shift in the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function. Possible errors include a negative value in the N field.

You can also use this function with arrays as shown in the example below.

Example of the ROR operation:

When byte1 = 2##0000_1111

ROR(byte1) returns 2#1000_0111

Array1 := ROR(Array1,2);

Other Bitwise Functions

Parameter Type Description
IN ANY_BIT Contains the value in which bits are rotated.

Any BOOL, BYTE, WORD, DWORD constant
or variable.

N ANY_INT Specifies the number of bit positions to rotate.
Any SINT, INT, DINT constant or variable.

OUT ANY_BIT Contains the result of rotating the bits in IN.
Any BOOL, BYTE, WORD, DWORD constant or
variable.

AND NOT OR
ROL SHL SHR
XOR
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 107
SHL
The SHL function shifts the individual bits of an input a specified number of
positions to the left.

Graphical representation:

Structured text syntax:
<OUT> := SHL(<IN>, <N>);

Operation is as follows:

• SHL examines input IN in its binary form and then shifts each bit to the
left by the number of positions specified by N.

• The most significant bit is lost after the shift.

• SHL stores the result of the shift in the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function..

• If N is negative or specifies a value that is greater than the number of bits
in OUT, SHL sets OUT to zero.

You can also use this function with arrays as shown in the example below.

Example of the SHL operation.
When byte1 = 2#1111_0000
SHL(byte1) returns 2#1110_0000
Array1 := SHL(Array1,2);

Other Bitwise Functions

Parameter Type Description
IN ANY_BIT Contains the value in which bits are shifted.

Any BOOL, BYTE, WORD, DWORD constant
or variable.

N ANY_BIT Specifies the number of bit positions to shift.
Any SINT, INT, DINT constant or variable.

OUT ANY_BIT Contains the result of shifting bits in IN.
Any BOOL, BYTE, WORD, DWORD variable.

AND NOT OR
ROL ROR SHR
XOR
Wonderware InControl™ Function and Function Block Reference User’s Guide

108 Chapter 1
SHR
The SHR function shifts the individual bits of an input a specified number of
positions to the right.

Graphical representation:

Structured text syntax:

<OUT> := SHR(<IN>, <N>);

Operation is as follows:

• SHR examines input IN in its binary form and then shifts each bit to the
right by the number of positions specified by N.

• The least significant bit is lost after the shift.

• SHR stores the result of the shift in the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function..

• If N is negative or specifies a value that is greater than the number of bits
in OUT, SHR sets OUT to zero.

You can also use this function with arrays as shown in the example below.

Example of the SHR operation.
When byte1 = 2#0000_1111
SHR(byte1) returns 2#0000_0111
Array1 := SHR(Array1,2);

Other Bitwise Functions

Parameter Type Description
IN ANY_BIT Contains the value in which bits are shifted.

Any BOOL, BYTE, WORD, DWORD constant
or variable.

N ANY_BIT Specifies the number of bit positions to shift.
Any SINT, INT, DINT constant or variable.

OUT ANY_BIT Contains the result of shifting bits in IN.
Any BOOL, BYTE, WORD, DWORD variable.

AND NOT OR
ROL ROR SHL
XOR
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 109
SIN
The SIN function calculates the sine of the input, which must be in radians.

Graphical representation:

Structured text syntax:
<OUT> := SIN(<IN>);

Operation is as follows:

• If the input IN (radians) is within the range of the selected data type, SIN
stores the sine of IN to the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Examples of the SIN operation:

SIN(0) returns 0

SIN(pi/2) returns 1

Other Trig/Log Functions

Parameter Type Description
IN ANY_REAL Contains the value in radians for which the sine

is calculated.
Any REAL or LREAL constant or variable.

OUT ANY_REAL Contains the sine of IN.
Any REAL or LREAL variable.

ACOS ASIN ATAN
COS EXP LN
LOG TAN
Wonderware InControl™ Function and Function Block Reference User’s Guide

110 Chapter 1
SQRT
The SQRT function calculates the square root of the input.

Graphical representation:

Structured text syntax:

<OUT> := SQRT(<IN>);

Operation is as follows:

• If the input IN is positive and within the range of the selected data type,
SQRT calculates the square root of IN, stores the result to the output
variable OUT

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function, such as when IN is negative

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Other Math Functions

Parameter Type Description
IN ANY_NUM Contains the value for which the square root is

calculated. IN must be positive.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

OUT ANY_NUM Contains the square root of the input.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD variable.

ABS ADD DIV
EXPT MAX MIN
MOD MOVE MUL
NEG SUB TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 111
STRING_TO_ARRAY
The STRING_TO_ARRAY function stores an input consisting of a string of
characters to an array of bytes.

Graphical representation:

Structured text syntax:
STRING_TO_ARRAY(OUT := <OUT> ,IN := <IN>);

Operation is as follows:

• STRING_TO_ARRAY stores each ASCII character in the string IN to the
output variable OUT a byte at a time.

• If the byte variable array is not large enough to hold every character in the
string, plus an additional byte for the terminating 0,
STRING_TO_ARRAY fills the array and stops. If the string is smaller
than the array, the remaining elements of the array are set to zero.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the STRING_TO_ARRAY operation:
STRING_TO_ARRAY (OUT:= byte_array, IN:= string1);

If string1 contains ’Sara’, then the array consists of five bytes, and
byte_array[0] = 83, byte_array[1] = 97, byte_array[2] = 114, byte_array[3] =
97, and byte_array[4] = 0.

Other Conversion Functions

Parameter Type Description
IN STRING Contains the string of characters to be

converted.
Any valid STRING character code or array of
bytes containing valid STRING character
codes. Values are decimal codes.

OUT BYE Contains the result of the conversion of the
string to an array of bytes.
Any BYTE variable array.

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING REAL_TO_TIME STRING_TO_DATE
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

112 Chapter 1
STRING_TO_DATE
The STRING_TO_DATE function converts an input string to a DATE value.

Graphical representation:

Structured text syntax:
<OUT> := STRING_TO_DATE (<IN>);

Operation is as follows:

• STRING_TO_DATE converts the value represented by the input variable
and stores the result as an ANY_DATE data type in the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

• If the contents of IN do not match the format of the DATE data type, OUT
is set to zero.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the STRING_TO_DATE operation:

STRING_TO_DATE('DT#2000-12-25-06:00:00')
returns DT#2000-12-25-06:00:00

Parameter Type Description
IN STRING Contains the string to convert.

A variable (STRING data type). The contents
of IN must match the format of the DATE, DT,
or TOD data types.

OUT ANY_DATE Contains the result of the conversion.
Any value, variable, or expression that
resolves to an ANY_DATE data type (DT, DATE,
TOD).
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 113
Other Conversion Functions

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING REAL_TO_TIME STRING_TO_ARRAY
STRING_TO_INT STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

114 Chapter 1
STRING_TO_INT
The STRING_TO_INT function converts an input string to an ANY_INT
value.

Graphical representation:

Structured text syntax:
<OUT> := STRING_TO_INT (<IN>);

Operation is as follows:

• STRING_TO_INT converts the value represented by the input variable
and stores the result as an ANY_INT data type in the output variable.

• If the converted value cannot be represented as a DINT or DWORD data
type, OUT is set to zero.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Examples of the STRING_TO_INT operation:

STRING_TO_INT('123') returns 123

STRING_TO_INT('12ABC') returns 12

STRING_TO_INT('ABC5') returns 0

Other Conversion Functions

Parameter Type Description
IN STRING Contains the string to convert.

Any STRING, or a variable or expression that
resolves to a STRING data type.

OUT ANY_INT Contains the result of the conversion.
An ANY_INT data type (SINT, INT, DINT,
BYTE, WORD, DWORD).

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING REAL_TO_TIME STRING_TO_ARRAY
STRING_TO_DATE STRING_TO_REAL STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 115
STRING_TO_REAL
The STRING_TO_REAL function converts a string input to an ANY_REAL
value.

Graphical representation:

Structured text syntax:
<OUT> := STRING_TO_REAL (<IN>);

Operation is as follows:

• STRING_TO_REAL converts each numeric character, up to the first non-
real character, in the string input IN to its decimal value and stores the
result of the conversion in OUT. If the string does not represent a valid
REAL value, STRING_TO_REAL stores zero in the output variable.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the STRING_TO_REAL operation:

STRING_TO_REAL('3.141') returns 3.141

STRING_TO_REAL('2.71ABC') returns 2.71

STRING_TO_REAL('ABC2) returns 0

Other Conversion Functions

Parameter Type Description
IN STRING Contains the data value to convert.

Any STRING, or a variable or expression that
resolves to a STRING data type.

OUT ANY_REAL Contains the result of the conversion.
An ANY_REAL data type (REAL, LREAL).

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING REAL_TO_TIME STRING_TO_ARRAY
STRING_TO_DATE STRING_TO_INT STRING_TO_TIME
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

116 Chapter 1
STRING_TO_TIME
The STRING_TO_TIME function converts a string input to a TIME value.

Graphical representation:

Structured text syntax:

<OUT> := STRING_TO_TIME (<IN>);

Operation is as follows:

• STRING_TO_TIME converts each character in the string IN to its decimal
value and stores the result in the output variable OUT according to the
TIME data type, described above.

• If the contents of IN do not match the format of the TIME data type, OUT
is set to zero.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the STRING_TO_TIME operation:

STRING_TO_TIME('T#33s') returns T#33

STRING_TO_TIME('64.5') returns T#1m4s500ms

STRING_TO_TIME('T#4.2m') returns T#4m12s

Other Conversion Functions

Parameter Type Description
IN STRING Contains the data value to convert.

A STRING or a variable or expression that
resolves to a STRING data type. The contents
of IN must match the format of the TIME data
type.

OUT TIME Contains the result of the conversion.
A TIME data type.

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING REAL_TO_TIME STRING_TO_ARRAY
STRING_TO_DATE STRING_TO_INT STRING_TO_REAL
TIME_TO_REAL TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 117
SUB
The SUB function subtracts one input value from another.

Graphical representation:

Structured text syntax:
<OUT> := <IN1> -<IN2>;

Operation is as follows:

• SUB subtracts IN2 from IN1 and stores the result to the output variable
OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can also use this function with arrays. For example, you can subtract a
number from every element in an array with the following line:

Array1 := Array2 - 9;

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Parameter Type Description
IN1 ANY_NUM

ANY_BIT ¹
Contains the minuend, the number from which
a value is subtracted.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

IN2 ANY_NUM
ANY_BIT ¹

Contains the subtrahend, the number that is
subtracted.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD constant or variable.

OUT ANY_NUM
ANY_BIT ¹

Contains the result of the subtraction of IN2
from IN1.
Any SINT, INT, DINT, REAL, LREAL, BYTE,
WORD, DWORD variable.

1 BOOL data types are not allowed.
Wonderware InControl™ Function and Function Block Reference User’s Guide

118 Chapter 1
Other Math Functions

ABS ADD DIV
EXPT MAX MIN
MOD MOVE MUL
NEG SQRT TRUNC
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 119
TAN
The TAN function calculates the tangent of the input, which must be in radians.

Graphical representation:

Structured text syntax:
<OUT> := TAN(<IN>);

Operation is as follows:

• If the input IN (radians) is within the range of the selected data type, TAN
stores the tangent of IN to the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Examples of the TAN operation:

TAN(pi/4) returns 1

TAN(0) returns 0

Other Trig/Log Functions

Parameter Type Description
IN ANY_REAL Contains the value in radians for which the

tangent is calculated.
Any REAL or LREAL constant or variable.

OUT ANY_REAL Contains the tangent of IN.
Any REAL or LREAL variable.

ACOS ASIN ATAN
COS EXP LN
LOG SIN
Wonderware InControl™ Function and Function Block Reference User’s Guide

120 Chapter 1
TIME_TO_REAL
The TIME_TO_REAL function converts a TIME input to an ANY_REAL value.

Graphical representation:

Structured text syntax:
<OUT> := TIME_TO_REAL (<IN>);

Operation is as follows:

• TIME_TO_REAL converts the value represented by the input variable and
stores the result as an ANY_REAL data type in the output variable.

The real number represents the time seconds.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the TIME_TO_REAL operation:

TIME_TO_REAL(T#1m4s500ms) returns 64.5

Other Conversion Functions

Parameter Type Description
IN TIME Contains the data value to convert.

A value, variable, or expression that resolves to
a TIME data type.

OUT ANY_REAL Contains the result of the conversion.
An ANY_REAL data type (REAL, LREAL).

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING REAL_TO_TIME STRING_TO_ARRAY
STRING_TO_DATE STRING_TO_INT STRING_TO_REAL
STRING_TO_TIME TIME_TO_STRING
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 121
TIME_TO_STRING
The TIME_TO_STRING function converts a TIME input to a string.

Graphical representation:

Structured text syntax:
<OUT> := TIME_TO_STRING (<IN>);

Operation is as follows:

• TIME_TO_STRING converts the content of IN to ASCII characters and
stores them in the string OUT using the format of the TIME data type.

• If the contents of IN do not match the format of the TIME data type, OUT
is set to zero.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

Example of the TIME_TO_STRING operation:

TIME_TO_STRING(T#1m4s500ms) returns the string 'T#1m4s500ms'

Other Conversion Functions

Parameter Type Description
IN TIME Contains the data value to convert.

A value, variable, or expression that resolves
to a TIME data type.

OUT STRING Contains the result of the conversion.
Any STRING variable.

ARRAY_TO_STRING BCD_TO_INT DATE_TO_REAL
DATE_TO_STRING INT_TO_BCD INT_TO_REAL
INT_TO_STRING REAL_TO_DATE REAL_TO_INT
REAL_TO_STRING REAL_TO_TIME STRING_TO_ARRAY
STRING_TO_DATE STRING_TO_INT STRING_TO_REAL
STRING_TO_TIME TIME_TO_REAL
Wonderware InControl™ Function and Function Block Reference User’s Guide

122 Chapter 1
TOF
The TOF function block times the duration of an event. After timing up to the
preset interval, the TOF turns off an output, which makes the TOF an off-delay
timer.

Graphical representation:

Structured text syntax:

<TOF Name>(IN:=<timer input>, PT:=<preset time>,
EN:=<enable>, Q:=<output>,ET:=<elapsed time>,
ENO:=<enable output>);

To set PT, enter the duration directly or click on Define Time Duration and
enter time intervals in the dialog box.

• If you enter the duration directly, follow the IEC 61131-3 specification: a
keyword, e.g., T#, TIME#, t#, time#, followed by time in days, hours,
minutes, seconds. Examples are shown below.

Parameter Type Description
TOF Name TOF Unique name for the timer.
IN BOOL Input starts the timer.

Any BOOL variable.
PT TIME Specifies the period for which the timer times.

Any TIME data type.
EN BOOL Enables the timer.

Any BOOL variable.
Q BOOL Output changes to FALSE when timer times

out.
Any BOOL variable.

ET TIME Contains the current elapsed time.
Any TIME data type.

ENO BOOL Echoes EN.
Any BOOL variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 123
Timer Duration Examples

• If you prefer to use the dialog box, enter the time into each field as
appropriate.

The figure shown below illustrates the same time entered by both methods.

Setting Timer Duration

Operation is as follows.

• When the enable input EN is TRUE the timer is enabled.

When EN is FALSE, the timer is not enabled and cannot begin timing.

When EN is set to FALSE, all timer outputs are set to FALSE.

• When input IN transitions from TRUE to FALSE, the timer begins timing,
storing the elapsed time in output ET.

• While the timer is timing, rung output Q is TRUE.

• If EN is set to FALSE while the timer is timing, ET is frozen in its current
state; Q is set to FALSE.

If EN changes from FALSE back to TRUE, the timer resumes timing,
beginning at the current value stored in ET; Q is set back to TRUE.

• When the elapsed time ET equals preset time PT, the timer sets Q to
FALSE.

• If input IN is set to TRUE, the timer resets ET to zero and stops timing; Q
remains TRUE.

• Enable output ENO echoes the value of EN.

Time Format Time Format
14.7 days T#14.7d 4 seconds Time#4s
2 minutes and 5
seconds

T#2m5s 1 day 29 minutes t#1d29m

74 minutes* time#74m 1 hour 5 seconds
and 44
milliseconds

T#1h5s44ms

* The IEC 61131-3 specification allows overflow of the most significant unit
in a duration.
Wonderware InControl™ Function and Function Block Reference User’s Guide

124 Chapter 1
WARNING! Assigning the same function block name to different timers may
cause unpredictable operation by the controller, which can result in death or
injury to personnel and/or damage to equipment. Always use a unique name
for each timer.

When the program is running, you can double-click a TOF to display the TOF
dialog box. The box displays the current value of all function block inputs and
outputs. You can also open the Watch window and enter timer variables that
you can observe at runtime.

Note Timers evaluate actual time elapsed and are not affected by setting a
program or the runtime engine to Paused mode.

You can use any of the TOF inputs and outputs in any expression, contact or
coil instead of a symbol of the same type. To reference a TOF input or output,
enter the function block name followed by a period and the specific input or
output suffix. For example, TOF5.Q refers to the rung output of TOF5. TOF
variables are listed below.

An example of the TOF timing diagram is shown below:

A. EN and ENO have been previously been set to TRUE. IN transitions from
TRUE to FALSE and ET indicates the timer has begun timing.

B. ET equals PT and Q transitions from TRUE to FALSE.

C. IN transitions from FALSE to TRUE.
Q is set to TRUE and ET is set to zero.

D. IN transitions from TRUE to FALSE and ET indicates the timer has begun
timing.

E. EN transitions from TRUE to FALSE, disabling the timer.
ET, which had been timing, holds at its current value, and Q is set to
FALSE.

F. EN transitions from FALSE to TRUE, re-enabling the timer.
ET resumes timing, and Q is set to TRUE.

G. ET equals PT and Q transitions from TRUE to FALSE.

Variable Reference Name
IN xxx.IN
PT xxx.PT
EN xxx.EN
Q xxx.Q
ET xxx.ET
ENO xxx.ENO
Note xxx denotes the timer function block name.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 125
TOF Timing Diagram

Other Timer Function Blocks

TON TP
Wonderware InControl™ Function and Function Block Reference User’s Guide

126 Chapter 1
TON
The TON function block times the duration of an event. After timing up to the
preset interval, the TON turns on an output, which makes the TON an on-delay
timer.

Graphical representation:

Structured text syntax:

<TON Name>(IN:= <timer input>, PT:=<preset time>,
EN:=<enable>, Q:=<output>,ET:=<elapsed
time>,ENO:=<enable output>);

WARNING! Assigning the same function block name to different timers may
cause unpredictable operation by the controller, which can result in death or
injury to personnel and/or damage to equipment. Always use a unique name
for each timer.

To set PT, enter the duration directly or click on Define Time Duration and
enter time intervals in the dialog box.

• If you enter the duration directly, follow the IEC 61131-3 specification: a
keyword, e.g., T#, TIME#, t#, time#, followed by time in days, hours,
minutes, seconds.

Parameter Type Description
TON Name TON Unique name for the timer.
IN BOOL Input starts the timer.

Any BOOL variable.
PT TIME Specifies the period for which the timer times.

Any TIME data type.
EN BOOL Enables the timer.

Any BOOL variable.
Q BOOL Rung output changes to TRUE when timer

times out.
Any BOOL variable.

ET TIME Contains the current elapsed time.
Any TIME data type.

ENO BOOL Echoes EN.
Any BOOL variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 127
• If you prefer to use the dialog box, enter the time into each field as
appropriate.

For examples of setting duration, see "TOF."

Operation is as follows.

• When the enable input EN is TRUE, the timer is enabled.

When EN is FALSE, the timer is not enabled and cannot begin timing.

When EN is set to FALSE, all timer outputs are set to FALSE.

• When input IN transitions from FALSE to TRUE, the timer begins timing,
storing the elapsed time in output ET.

• While the timer is timing, output Q is FALSE.

• If EN is set to FALSE while the timer is timing, ET is frozen in its current
state; Q remains FALSE.

If EN changes from FALSE back to TRUE, the timer resumes timing,
beginning at the current value stored in ET; Q remains FALSE.

• When the elapsed time ET equals preset time PT, the timer sets Q to
TRUE.

• If input IN is set to FALSE before ET equals PT, the timer resets ET to
zero and stops timing; Q remains FALSE.

• Enable output ENO echoes the value of EN.

When the program is running, you can double click a TON to display the TON
dialog box. The box displays the current value of all function block inputs and
outputs. You can also open the Watch window and enter timer variables that
you can observe at runtime.

Note Timers evaluate actual time elapsed and are not affected by setting a
program or the runtime engine to Paused mode.

You can use any of the TON inputs and outputs in any expression, contact or
coil instead of a symbol of the same type. To reference a TON input or output,
enter the function block name followed by a period and the specific input or
output suffix. For example, TON1.ET refers to the elapsed time output of
TON1. All TON variables are listed below.

An example of the TON timing diagram is shown below:

Variable Reference Name
IN xxx.IN
PT xxx.PT
EN xxx.EN
Q xxx.Q
ET xxx.ET
ENO xxx.ENO
Note xxx denotes the timer function block name.
Wonderware InControl™ Function and Function Block Reference User’s Guide

128 Chapter 1
A. EN and ENO have been previously been set to TRUE.
IN transitions from FALSE to TRUE and ET indicates the timer has begun
timing.

B. ET equals PT and Q transitions from FALSE to TRUE.

C. IN transitions from TRUE to FALSE.
Q is set to FALSE and ET is set to zero.

D. IN transitions from FALSE to TRUE and ET indicates the timer has begun
timing.

E. EN transitions from TRUE to FALSE, disabling the timer.
ET, which had been timing, holds at its current value.

F. EN transitions from FALSE to TRUE, re-enabling the timer.
ET resumes timing.

G. ET equals PT and Q transitions from FALSE to TRUE.

TON Timing Diagram

Other Timer Function Blocks

TOF TP
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 129
TP
The TP function block times the duration of an event. After its input pulses
from off to on, the TP times up to the preset interval and turns off an output,
which makes the TP an off-delay timer.

Graphical representation:

Structured text syntax:
<TP Name>(IN:=<timer input>, PT:=<preset time>,

EN:=<enable>, Q:=<output>, ET:=<elapsed time>,
ENO:=<enable output>);

WARNING! Assigning the same function block name to different timers may
cause unpredictable operation by the controller, which can result in death or
injury to personnel and/or damage to equipment. Always use a unique name
for each timer.

To set PT, you can enter the duration directly or click on Define Time
Duration and enter time intervals in the dialog box.

• If you enter the duration directly, follow the IEC 61131-3 specification: a
keyword, e.g., T#, TIME#, t#, time#, followed by time in days, hours,
minutes, seconds.

Parameter Type Description
TP Name TP Unique name for the timer.
IN BOOL Input starts the timer.

Any BOOL variable.
PT TIME Specifies the period for which the timer times.

Any TIME data type.
EN BOOL Enables the timer.

Any BOOL variable.
Q BOOL Output changes to FALSE when timer times

out.
Any BOOL variable.

ET TIME Contains the current elapsed time.
Any TIME data type.

ENO BOOL Echoes EN.
Any BOOL variable.
Wonderware InControl™ Function and Function Block Reference User’s Guide

130 Chapter 1
• If you prefer to use the dialog box, enter the time into each field as
appropriate.

For examples of setting duration, see "TOF."

Operation is as follows.

• When the enable input EN is TRUE, the timer is enabled.

When EN is FALSE, the timer is not enabled and cannot begin timing.

When EN is set to FALSE, all timer outputs are set to FALSE.

• When input IN transitions from FALSE to TRUE, the timer begins timing,
storing the elapsed time in output ET.

• While the timer is timing, output Q is TRUE.

• If EN is set to FALSE while the timer is timing, ET is frozen in its current
state; Q is set to FALSE.

If EN changes from FALSE back to TRUE, the timer resumes timing,
beginning at the current value stored in ET; Q is set back to TRUE.

• When the elapsed time ET equals preset time PT, the timer sets Q to
FALSE.

• If input IN is set to FALSE before ET equals PT, the timer continues
timing until ET equals PT.

• Enable output ENO echoes the value of EN.

When the program is running, you can double-click a TP to display the TP
dialog box. The box displays the current value of all function block inputs and
outputs. You can also open the Watch window and enter timer variables that
you want to observe at runtime.

Note Timers evaluate actual time elapsed and are not affected by setting a
program or the runtime engine to Paused mode.

You can use any of the TP inputs and outputs in any expression, contact or coil
instead of a symbol of the same type. To reference a TP input or output, enter
the function block name followed by a period and the specific input or output
suffix. For example, TP9.IN refers to the input of TP9. All TP variables are
listed in the following table.

Variable Reference Name
IN xxx.IN
PT xxx.PT
EN xxx.EN
Q xxx.Q
ET xxx.ET
ENO xxx.ENO
Note xxx denotes the timer function block name.
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 131
An example of the TP timing diagram is shown below:

A. EN and ENO have been previously been set to TRUE.
IN transitions from FALSE to TRUE, Q is set to TRUE, and ET indicates
the timer has begun timing.
While the timer is timing, IN can toggle without affecting ET or Q.

B. ET equals PT and Q transitions from TRUE to FALSE.

C. IN transitions from TRUE to FALSE.
ET is set to zero

D. IN transitions from FALSE to TRUE, Q is set to TRUE, and ET indicates
that the timer has begun timing.

E. EN transitions from TRUE to FALSE, disabling the timer.
ET, which had been timing, holds at its current value, and Q is set to
FALSE.

F. EN transitions from FALSE to TRUE, re-enabling the timer.
ET resumes timing., and Q is set to TRUE.

G. ET equals PT and Q transitions from TRUE to FALSE.

TP Timing Diagram

Other Timer Function Blocks

TOF TON
Wonderware InControl™ Function and Function Block Reference User’s Guide

132 Chapter 1
TRUNC
The TRUNC function removes one or more of the least significant digits of an
ANY_REAL data type.

Graphical representation:

Structured text syntax:

<OUT> := TRUNC(<IN>);

Operation is as follows:

• TRUNC removes the fractional part of <IN> and stores the resulting integer
value in <OUT>.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

For more information about using data types in math expressions, see "Variable
Data Types" in the "Defining Variables" chapter of the InControl Environment
Manual.

Example of the TRUNC operation:

TRUNC(4.9) returns 4.

TRUE AND FALSE returns FALSE.

Other Math Functions

Parameter Type Description
IN ANY_REAL Contains the value to be truncated.

Any number, variable, or expression that
resolves to an ANY_REAL data type (REAL,
LREAL).

OUT ANY_INT Contains the truncated value of IN.
An ANY_INT variable data type (SINT, INT,
DINT, BYTE, WORD, DWORD).

ABS ADD DIV
EXPT MAX MIN
MOD MOVE MUL
NEG SQRT SUB
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 133
WRITEFILE
The WRITEFILE function block writes data from a variable of a user-defined
data type to a file. The WRITEFILE is one of eight function blocks that do file
operations. Note that these function blocks are not designed for high-speed I/O
execution or data transfers of large blocks of information.

Graphical representation:

Structured text syntax:
WRITEFILE (FCB:= <file control block name>, IN:=

<variable>, [F:=<fieldsep>],
[S:=<stringsep>],[T:=<eol>]);;

Parameter Type Description
File Control
Block Name

FILE Name of the file control block that handles
operations for this file.

Variable USER-
DEFINED

Name of the user-defined data type variable
containing the data that is written to the file.
Any user-defined data type. If only one value
needs to be read or written, you can use a
variable of type ANY.

Field
Separator ¹

STRING String character used to separate fields in the
file. During file write operations, InControl
places a field separator between values.
Any valid STRING character. The default is the
space character.

String
Delimiter ¹

STRING String character used to separate strings in the
file. FWRIT places the string delimiter on
each end of a string prior to writing to the file.
Any valid STRING character. The default is the
double-quotation mark character.

EOL
Delimiter ¹

STRING String character used to indicate the end of a
line in the file. A line can be up to 1 K in
length. You cannot write more than 1 K of data
for each execution of the FWRIT. When a
write operation is finished and all values are
written to the file, InControl attaches an EOL
delimiter
Any valid STRING character. The default is the
new line character.
Wonderware InControl™ Function and Function Block Reference User’s Guide

134 Chapter 1
Operation is as follows.

• The OPENFILE or the NEWFILE must open the file before the
WRITEFILE can write to it.

• WRITEFILE writes to the file that is associated with the control block,
specified in the File Control Block Name field.

• The file control variables handle access to the file and error conditions, as
described for the "CLOSEFILE" function block. All file function blocks
that operate on the same file must use the same File Control Block name.

• The system writes the data from the user-defined data type specified in the
Data field to the file.

• If an error occurs, the file error variable is set to TRUE, ENO is set to
FALSE, and a message appears in the Output window and the Wonderware
Logger. For a list of the error codes, see "CLOSEFILE."

You also need to create a user-defined data type variable using a data structure
appropriate for the data read from the file.

Note that data of the TIME, DATE, DT, and TOD data types is written out in
STRING format instead of number format. The READFILE can read this data
format, provided it is formatted correctly following the IEC-61131
specification.

If you use WRITEFILE to append data to a file (the file was opened with the
File Control Append Input Variable set to TRUE), then subsequent read
operations on the file will generate an End of File error (code 31). Be sure to
rewind the file before attempting to read it again.

BUSY ² BOOL Indicates the file control block is busy.
Any BOOL variable.

OPEN ² BOOL Indicates the file has been opened.
Any BOOL variable.

EFLAG ² BOOL Indicates a file operation error has occurred.
Any BOOL variable.

ERR ² ANY_INT Contains the error code if a file operation error
occurs.
Any SINT, INT, DINT, BYTE, WORD, DWORD
variable.

1 When outputting symbols of data type STRING, FWRIT writes IEC
special characters ($N, $P, etc.) in their actual ASCII format. For
example, $N generates a carriage return / linefeed in the resultant file. If
you intend to reread the file using FREAD, choose delimiters carefully
to avoid conflicts with string characters contained within the file.

2 Entries in the output fields are optional. However, for each field there is
a default file control variable. As you design your program, you must use
these output variables to handle file control. These fields reflect outputs
in the specified file control block and are not actual parameters to the
WRITEFILE function. For a detailed description of the file control
variables, see "CLOSEFILE."

Parameter Type Description
Wonderware InControl™ Function and Function Block Reference User’s Guide

Functions and Function Blocks 135
The following is an example of the WRITEFILE procedure. Note also the
usage of the NEWFILE, REWINDFILE, READFILE, and CLOSEFILE
procedures.
NEWFILE (rpt, "my_file");
WRITEFILE (rpt, data_in);
REWINDFILE (rpt);
READFILE (FCB:= rpt, OUT:= data_out);
CLOSEFILE (rpt);

1. NEWFILE creates a file called my_file. The default location for my_file is
the same directory where RTEngine.exe is located.

2. WRITEFILE copies the contents of the STRING variable data_in to
my_file.

3. REWINDFILE sets the file pointer to the beginning of my_file.

4. READFILE copies the contents of my_file to the STRING variable
data_out.

5. CLOSEFILE closes my_file.

Caution! Each file write operation prints one or more lines of ASCII text to a
file. Writing data to the file multiple times can potentially corrupt the file
contents, with the risk of losing information. This can occur when you rewind
the file and in the next write operation, the length of a new line of information
is different from the line that it overwrites. When you design your file write
operations, make sure that new lines of data are the same length as the lines
being replaced, or delete a file and replace it.

Other File Function Blocks

CLOSEFILE COPYFILE DELETEFILE
NEWFILE OPENFILE READFILE
REWINDFILE
Wonderware InControl™ Function and Function Block Reference User’s Guide

136 Chapter 1
XOR
The XOR function block does a bitwise logical Exclusive OR of two values.

Graphical representation:

Structured text syntax:

<OUT> := <IN1> XOR <IN2>;

Operation is as follows:

• XOR does an Exclusive OR on each bit of the two inputs IN1and IN2.

• XOR stores the result of the XOR operation to the output variable OUT.

• The EN BOOL parameter is used only in the graphical languages to enable
the function to execute. ENO follows EN unless an error condition occurs
within the function.

You can also use this function with arrays as shown in the example below.

Examples of the XOR operation:

2#0011 XOR 2#0101 returns 2#0110

TRUE XOR TRUE returns FALSE

Array1 := Array2 XOR #16FFFE;

Other Bitwise Functions

Parameter Type Description
IN1 ANY_BIT Contains the first value to be XORed.

Any BOOL, BYTE, WORD, DWORD constant
or variable.

IN2 ANY_BIT Contains the second value to be XORed.
Any BOOL, BYTE, WORD, DWORD constant
or variable.

OUT ANY_BIT Contains the result of XORing IN1 and IN2.
Any BOOL, BYTE, WORD, DWORD variable.

AND NOT OR
ROL ROR SHL
SHR
Wonderware InControl™ Function and Function Block Reference User’s Guide

Index 137

Index

A
Abort_All Function Block 14
Absolute Value Function 15
ACOS Function 16
Addition Function 17
AND Function 19
Arc Sine Function 23
Arc Tangent Function 24
Array to String Function 20

B
BCD to Integer Function 25

C
Complement Function 87
Concatenate Function 31
Copy Leftmost Characters Function 68
Copy Middle Characters Function 74
Copy Rightmost Characters Function 104
Cosine Function 34
Counter (Function Block)

Count Down 35
Count Up 38
Count Up/Down 41

Counter Function Block
Count Up 38
Count Up/Down 41

Counter, System Variable 36, 39, 43

D
Date to Real Function 45
Date to String Function 47
Delete Characters Function 48
Division Function 52

E
Equality Comparison Function 54, 83
Exponentiation

Function 56

F
Falling Edge Trigger Function 58
Fault Mode

Program 28
Runtime Engine 14

File Close Function 26
File Control Variables 29
File Copy Function 32
File Delete Function 50
File Open Function 88
FILE, System Variable 29
Function

Abort_ALL 14
Absolute Value 15
ACOS 16

Addition 17
AND 19, 87
Arc Sine 23
Arc Tangent 24
Array to String 20
BCD to Integer 25
Calculate Modulus 76
Comparison for Maximum 73
Comparison for Minimum 75
Concatenate 31
Copy Leftmost Characters 68
Copy Middle Characters 74
Copy Rightmost Characters 104
Cosine 34
Date to Real 45
Date to String 47
Delete Characters 48
Division 52
Equality Comparison 54
Falling Edge Trigger 58
File Close 26
File Copy 32
File Delete 50
File Open 88
Greater Than Comparison 61
Greater Than or Equal Comparison 60
Insert String 62
Integer to BCD 64
Integer to Real 65
Integer to String 66
Invert Bits 87
Length of String 69
Less Than Comparison 72
Less Than or Equal Comparison 67
Logarithm Calculation 71
Message, in Output Window 80
Move Data 78
Multiplication 82
Natural Logarithm Calculation 70
Natural Logarithm Exponentiation 55
Negation 84
New File 85
Not Equal Comparison 83
OR 90
Power, Raise a Number to 56
Read File 92
Real to Date 95
Real to Integer 97
Real to String 98
Real to Time 99
Replace Characters 100
Rewind File 102
Rising Edge Trigger 91
Rotate Left 105
Rotate Right 106
Search for String 59
Shift Left 107
Shift Right 108
Sine 109
Square Root 110
String to Array 111
Wonderware InControl™ Function and Function Block Reference User’s Guide

138 Index
String to Date 112
String to Integer 114
String to Real 115
String to Time 116
Subtraction 117
Tangent 119
Time to Real 120
Time to String 121
Timer (Off Delay) 122
Timer (On Delay) 126
Timer (Pulse) 129
Truncation 132
Write File 133
XOR 136

Function Block
Counter

Count Down 35

G
Greater Than Function 61
Greater Than or Equal Function 60

I
Insert String Function 62
Integer to BCD Function 64
Integer to Real Function 65
Integer to String Function 66
Invert Bits Function 87

L
Length of String Function 69
Less Than Function 72
Less Than or Equal Function 72
Logarithm Calculation Function 72

M
Message To Output Window Function 80
Modulus Calculation Function 76
Move Data Function 78
Multiplication Function 82

N
Natural Logarithm Calculation Function 70
Natural Logarithm, Exponentiation Function 55
Negation Function 84
New File Function 85
NOT Function 87

O
OR Function 90

P
Power, Raise a Number to, Function 56
Program

Fault Mode 29

R
Read File Function 92
Real to Date Function 95
Real to Integer Function 97
Real to String Function 98
Real to Time Function 99
Replace Characters Function 100
Rewind File Function 102
Rising Edge Trigger Function 91
Rotate Left Function 105
Rotate Right Function 106
Runtime Engine

Fault Mode 14

S
Search for String Function 59
Shift Left Function 107
Shift Right Function 108
Sine Function 109
Square Root Function 110
String to Array Function 111
String to Date Function 112
String to Integer Function 114
String to Real Function 115
String to Time Function 116
Subtraction Function 117
System Variables

Counter 36, 39, 43
Timer 122, 124, 126

T
Tangent Function 119
Time to Real Function 120
Time to String Function 121
Timer (Off Delay) Function 122
Timer (On Delay) Function 126
Timer,System Variable 122, 124, 126
Truncate Function 132

V
Variables

File Control 29
System

Counter 36, 39, 43
Timer 122, 124, 126

W
Write File Function 133

X
XOR Function 136
Wonderware InControl™ Function and Function Block Reference User’s Guide

Wonderware®

InControl™ and InTouch® Reference
User’s Guide
Revision H

Last Revision: January 2004

Invensys Systems, Inc.

All rights reserved. No part of this documentation shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission of
Invensys Systems, Inc. No copyright or patent liability is assumed with respect
to the use of the information contained herein. Although every precaution has
been taken in the preparation of this documentation, the publisher and the
author assume no responsibility for errors or omissions. Neither is any liability
assumed for damages resulting from the use of the information contained
herein.

The information in this documentation is subject to change without notice and
does not represent a commitment on the part of Invensys Systems, Inc. The
software described in this documentation is furnished under a license or
nondisclosure agreement. This software may be used or copied only in
accordance with the terms of these agreements.

© 2001-2004 Invensys Systems, Inc. All Rights Reserved.

Invensys Systems, Inc.
26561 Rancho Parkway South
Lake Forest, CA 92630 U.S.A.
(949) 727-3200
http://www.wonderware.com

Trademarks

All terms mentioned in this documentation that are known to be trademarks or
service marks have been appropriately capitalized. Invensys Systems, Inc.
cannot attest to the accuracy of this information. Use of a term in this
documentation should not be regarded as affecting the validity of any
trademark or service mark.

Alarm Logger, ActiveFactory, ArchestrA, Avantis, DBDump, DBLoad, DT
Analyst, FactoryFocus, FactoryOffice, FactorySuite, FactorySuite A2,
InBatch, InControl, IndustrialRAD, IndustrialSQL Server, InTouch, InTrack,
MaintenanceSuite, MuniSuite, QI Analyst, SCADAlarm, SCADASuite,
SuiteLink, SuiteVoyager, WindowMaker, WindowViewer, Wonderware, and
Wonderware Logger are trademarks of Invensys plc, its subsidiaries and
affiliates. All other brands may be trademarks of their respective owners.

Contents 3

Contents

CHAPTER 1: InControl and InTouch.................5

InControl Functions Supported by InTouch... 6
Installing the InControl Wizards... 6

Using the InControl Project Wizard... 7
Using the Configure Runtime Engine Wizard 8
Using the InControl Mode Wizard... 9
Using the InControl Runtime Edit Wizard... 10
Using the InControl Clear Faults Wizard..11
Using the InControl Runtime Add Tag Wizard.................................... 12

Displaying the InControl Symbols ... 12
Linking InControl Symbols to InTouch Tags 14
Example Showing Linked Symbols ... 15
Linking Tags on Remote Systems .. 15

Using the InTouch Tag Browser... 17
Project Node/Name and InTouch ... 18
InControl QuickScript Functions ... 19

 Index ..21
Wonderware InControl™ and InTouch® Reference User’s Guide

4 Contents
Wonderware InControl™ and InTouch® Reference User’s Guide

InControl and InTouch 5
C H A P T E R 1

InControl and InTouch

This chapter describes the functions of the InControl wizards used in the
InTouch environment.

Contents
• InControl Functions Supported by InTouch

• Using the InControl Project Wizard

• Using the Configure Runtime Engine Wizard

• Using the InControl Mode Wizard

• Using the InControl Runtime Edit Wizard

• Using the InControl Clear Faults Wizard

• Using the InControl Runtime Add Tag Wizard

• Using the InTouch Tag Browser

• Project Node/Name and InTouch

• InControl QuickScript Functions
Wonderware InControl™ and InTouch® Reference User’s Guide

6 Chapter 1
InControl Functions Supported by InTouch
InControl provides the following six wizards that can be placed on an InTouch
window. These wizards allow easy and effective interaction between InControl
and InTouch.

• InControl Project Enables the operator to launch an InControl project.
This starts InControl for the specified project and allows the operator to
use all the InControl functions to edit, compile, download, and run the
programs in that project. The InControl development environment must be
installed on the operator’s hardware system.

• Configure Runtime Engine Enables the operator to make online
configuration changes to the runtime engine on the specified node.

• InControl Mode Enables the operator to set the mode (Run, Pause, Single
Scan) for the project that is downloaded to the specified node.

• InControl Edit Enables the operator to launch an individual program in a
project. This starts InControl within the development environment, at a
specified line within the specified program. The operator can use all the
tools available in the development environment to edit, compile,
download, and run the program. The InControl development environment
must be installed on the operator’s hardware system.

• InControl Clear Faults Enables the operator to clear any runtime engine
faults on the specified node at runtime.

• InControl Runtime Add Tag Links InTouch tags with InControl symbols
(variables). The InControl development environment must be installed on
the operator’s hardware system.

Installing the InControl Wizards
For instructions about adding the InControl wizards to the InTouch toolbox and
placing them on an InTouch window, see the InTouch User’s Guide.

To install InControl wizards, see "Installation Guidelines" of the "Getting
Started with InControl" chapter.
Wonderware InControl™ and InTouch® Reference User’s Guide

InControl and InTouch 7
Using the InControl Project Wizard
Place the InControl Project wizard on an InTouch window to enable the
operator to launch a project at runtime. Clicking this wizard from
WindowViewer starts InControl within the runtime environment for the
specified project. The operator can use all the functions of the InControl
development environment to edit, validate, download, and run the programs in
that project. The InControl development environment must be installed on the
operator’s hardware system.

If you double-click the InControl Project wizard from the InTouch
WindowMaker, the InControl Project Link dialog box appears.

InControl Project Link Dialog Box

Button / Field Description
Project Name Select the default project to be launched in the

Development environment. The operator can choose to
launch any of the other projects that appear in the Project
Name field. The InControl development environment
must be installed on the operator’s hardware system
before the operator can edit any project files.

Launch Click Launch to run the specified InControl project from
WindowMaker.

OK Accepts the selected project to be launched in the
Development environment.

Cancel Closes the wizard dialog box without saving entries.
Wonderware InControl™ and InTouch® Reference User’s Guide

8 Chapter 1
Using the Configure Runtime Engine Wizard
Place the Configure Runtime Engine wizard on an InTouch window to enable
the operator to make configuration changes to the runtime engine on the
specified node at runtime.

To specify the node for which the operator configures the runtime
engine:

1. Double-click the wizard. The InControl Runtime Engine Node dialog
box appears.

InControl Runtime Engine Node Dialog Box

2. Specify the target hardware platform.

3. To specify the runtime engine on the local node, leave the Node field
blank.

To specify the runtime engine on a remote node, enter the node name in
the Node field.

When the operator clicks the wizard from the InTouch window at runtime,
the Online Runtime Engine Properties dialog box appears.

For a complete description of the fields of the Online Runtime Engine
Properties dialog box, see "Checking General Properties of the Runtime
Engine" of the "InControl System Administration" chapter.
Wonderware InControl™ and InTouch® Reference User’s Guide

InControl and InTouch 9
Using the InControl Mode Wizard
Place the InControl Mode wizard on an InTouch window to enable the operator
to change the mode (Run Project, Pause, Single Scan) for the project that has
been downloaded to the runtime engine.

To specify the node controlled by the InControl Mode Wizard:

1. Double-click the wizard. The InControl Runtime Engine Node dialog
box appears.

InControl Runtime Engine Node Dialog Box

2. Specify the target hardware platform.

3. To specify the runtime engine on the local node, leave the Node field
blank.

To specify the runtime engine on a remote node, enter the node name in
the Node field.

For more information about program mode, see "Selecting Runtime Options"
of the "Running a Project" chapter.
Wonderware InControl™ and InTouch® Reference User’s Guide

10 Chapter 1
Using the InControl Runtime Edit Wizard
Place the InControl Runtime Edit wizard on an InTouch window to enable the
operator to open an InControl program at a specific point in the program. After
the editor opens the program, the operator can use all the functions of the
InControl development environment to edit, compile, download, and run the
program. If there are any other programs in the project, the operator can access
these as well. The InControl development environment must be installed on the
operator’s hardware system before the operator can edit any project files.

When the program is opened, the editor displays the program at the last
location of the cursor when the program was closed. If you want to direct the
operator’s attention to the code that controls a valve, for example, which is on
an InTouch window, place the Edit wizard near the valve. Open the program,
move the cursor to the valve code, and then close the program.

If you double-click the InControl Runtime Edit wizard from the InTouch
WindowMaker, the InControl Editor dialog box appears.

InControl Editor Dialog Box

Button / Field Description
Project Name Select the InControl project containing the program to

edit.
File Name Select the program to be edited.
Launch Click Launch to run the specified InControl program

from WindowMaker.
OK Accepts the selected program to be edited.
Cancel Closes the wizard dialog box without saving entries.
Wonderware InControl™ and InTouch® Reference User’s Guide

InControl and InTouch 11
Using the InControl Clear Faults Wizard
Place the InControl Runtime Engine Clear Faults wizard on an InTouch
window to enable the operator to clear any runtime engine faults on the
specified node at runtime. When the operator clicks the wizard at runtime,
runtime engine status bits, such as RTEngine.ScanOverrun, are cleared.

To specify the node for which the operator clears faults:

1. Double-click the wizard. The InControl Runtime Engine Node dialog
box appears.

InControl Runtime Engine Node Dialog Box

2. Specify the target hardware platform.

3. To specify the runtime engine on the local node, leave the Node field
blank.

To specify the runtime engine on a remote node, enter the node name in
the Node field.
Wonderware InControl™ and InTouch® Reference User’s Guide

12 Chapter 1
Using the InControl Runtime Add Tag Wizard
Use the InControl Runtime Add Tag wizard to link InTouch tags to symbols
(variables) used in an InControl project. The InControl development
environment must be installed where you are running InTouch for you to link
InControl symbols to InTouch tags.

Displaying the InControl Symbols
When you click the InControl Runtime Add Tag wizard from WindowMaker,
the InControl Tag Import dialog box appears. All symbols used in the
programs within the project are listed. To link a symbol to a tag, see "Linking
InControl Symbols to InTouch Tags."

InControl Tag Import Dialog Box
Wonderware InControl™ and InTouch® Reference User’s Guide

InControl and InTouch 13
Button / Field Description
Project Name Select the project with the symbols to be linked to tags.

The InControl projects listed in this field are the same
ones configured in the InControl Development
environment, if it is installed on the local node. If
InControl is not installed on the local node, this list is
blank. You can browse the network and add InControl
projects to the list.

Access Name Specify the access name to be used for accessing tags you
link. For the local node, use the default value RTEngine.
For a remote node, enter the access name definition listed
in the InTouch Access Names dialog box for the node
(click Access Names on the Special menu to open this
dialog box).
For multiple remote nodes, the access names for the
nodes must be unique. Define an access name for each
remote node.

Prefix/Suffix Optional. Enter a prefix or a suffix to the tag names that
are imported into InTouch. This enables you to group
tags, by project for example, if you are displaying several
groups in one InTouch window.

InControl Symbol Symbol name used in InControl.
Double-click the symbol name to display the Add Tag
dialog box. The Add Tag dialog box is described in
"Linking InControl Symbols to InTouch Tags."
If the tag has already been added to the InTouch database,
double-click the symbol name to display the InTouch
Tagname Dictionary dialog box.

Type Read-only field displays the data type for the symbol.
InTouch Tagname Tag name to be used in InTouch. Field is blank until the

InControl symbol has been linked to an InTouch tag.
Add All Links all symbols in the project to InTouch tags.
Apply Links selected InControl symbols to InTouch tags.
Edit Tag Displays the Add Tag dialog box if the tag has not been

added to the InTouch database.
Displays the InTouch Tagname Dictionary dialog box if
the tag has already been added to the InTouch database.

Refresh Redisplays all information in the dialog box.
Done Closes the dialog box.
Wonderware InControl™ and InTouch® Reference User’s Guide

14 Chapter 1
Linking InControl Symbols to InTouch Tags
When you display the InControl Tag Import dialog box, all symbols used in
the programs within the project are listed. Select one or more symbols and
click Apply. The Add Tag dialog box appears. You can also double-click an
individual symbol to display the Add Tag dialog box.

Add Tag Dialog Box

Button / Field Description
InControl Symbol Read-only field displays the name of the symbol to be

linked.
InControl Type Read-only field displays data type of the symbol.
Default Tagname Tag name to be used by InTouch. The InControl symbol

name is the default.
Yes to All Links all selected symbols to InTouch tags.
Yes Links the selected symbol to an InTouch tag.
No Closes the dialog box without linking the symbol to a tag.

If multiple symbols are selected, the next symbol is
displayed.

Cancel Closes the dialog box without saving entries.
Wonderware InControl™ and InTouch® Reference User’s Guide

InControl and InTouch 15
Example Showing Linked Symbols
The following figure shows the InControl Tag Import dialog box after two
symbols have been linked to tags.

Linking Symbols and Tags

Linking Tags on Remote Systems
You can link InControl symbols, which are used in projects located on remote
nodes, to InTouch tags. The remote system must contain a copy of InControl,
and it must be networked to the system on which you are running InTouch. If
you are using DDE, you must implement NetDDE between the two systems. If
you are using SuiteLink, you are not required to use DDE.

For information about implementing NetDDE, See the following sources:

• Technical Note #30 "Configuring Windows NT 4.0 DDE Shares for
NetDDE." The Tech Note publication is published periodically by the
Wonderware Technical Support group. E-mail your questions or requests
to techpubs@wonderware.com.

• The Comprehensive Support Knowledge Base CD. Phone Wonderware
Technical Support at (949) 727-3299 for more information about the
Comprehensive Support Knowledge Base CD.

• NetDDE Extensions for Windows NT User’s Guide, part number 05-139.

Before you can link the symbols in the project located on the remote node, you
need to add that project to the Project List on the computer on which you are
running InTouch. See "Adding a Project" of the "Project Organization and
Management" chapter for a detailed procedure.
Wonderware InControl™ and InTouch® Reference User’s Guide

16 Chapter 1
To link the symbols of a remote node to the InTouch tags on a local
system:

1. Click the InControl Runtime Add Tag wizard from Window Maker, as
described in "Using the InControl Runtime Add Tag Wizard", to display
the InControl Tag Import dialog box.

InControl Tag Import Dialog Box

2. Click the display tool to the right of the Project Name field to display all
the projects in the Project List.

3. Select the remote project. The InControl Tag Import dialog box displays
the symbols for the remote project.

4. Link the symbols to the InTouch tags, described in "Linking InControl
Symbols to InTouch Tags."
Wonderware InControl™ and InTouch® Reference User’s Guide

InControl and InTouch 17
Using the InTouch Tag Browser
As an alternative to using the InControl Add Tag wizard for importing
InControl symbols into InTouch, you can use the InTouch Tag Browser. The
Tag Browser is especially useful when you are writing a script and need to
reference an InControl symbol.

For detailed information about using the InTouch Tag Browser, see the InTouch
User’s Guide.

Note that you can also use the Import and Export tools on the Symbol Manager
toolbar to exchange symbols between InControl and InTouch. The comma-
separated format (CSV) is used, which means you can easily edit a file of
symbol data using an ASCII text editor or Excel.

For more information about using the Import and Export tools, see
"Transferring Symbol Databases" in the "Defining Variables" chapter.

If you intend to use InTouch and InControl on separate systems and need to
view the InControl symbols from InTouch, you must install the InControl Tag
Browser files on the system where InTouch is located. Run the InControl setup
program on the InTouch system and choose InTouch Extensions when
prompted for the setup option.

For more information about installing InControl, see "Installation Guidelines"
in the "Getting Started with InControl" chapter.
Wonderware InControl™ and InTouch® Reference User’s Guide

18 Chapter 1
Project Node/Name and InTouch
You can use two runtime engine symbols (NodeName and ProjectName) to
send a project name and the node on which the project is executing to an HMI,
such as InTouch.

For example, to display the name of a project (called 923) and the node where
it is executing (called DYB2), in the Watch Window, add the following
symbols to the Watch Window: RTEngine.ProjectName and
RTEngine.NodeName. The following figure shows the symbols as they appear
in the Watch Window.

Displaying Project Information
Wonderware InControl™ and InTouch® Reference User’s Guide

InControl and InTouch 19
InControl QuickScript Functions
InTouch scripting is one of the most powerful features of an InTouch
application. The InTouch QuickScript capabilities allow the operator to
execute commands and logical operations based on specified criteria. For
example, you can define a button that an operator selects to open an InControl
project or to clear faults in the runtime engine.

InControl supports two QuickScript functions that you can use within an
InTouch script: InControl() and InControlRuntimeEngine().

InControl()
Opens an InControl project, program, I/O configuration, etc.

Syntax
InControl("Project","Command","Param");

Example
InControl("c:\Projects\SeamWeld","Launch","BandLogic");

opens the program called BandLogic of the project called SeamWeld in the
InControl development environment.

Parameter Description Values
Project Path of an InControl project. <user-specified>
Command Operation to be executed. Launch
Param Name of object to be started. <user-specified>
Wonderware InControl™ and InTouch® Reference User’s Guide

20 Chapter 1
InControlRuntimeEngine()
Sends a command to the runtime engine.

Syntax
InControlRuntimeEngine("Nodename","Command","Param");

Examples
InControlRuntimeEngine("Node75","Mode","Stop");

stops the project that is running on the node called Node75.
InControlRuntimeEngine("Node42","Configure","");

displays the Online Runtime Engine Properties dialog box for the runtime
engine that is running on the node called Node42.

Parameter Description Values
Nodename Name of the node where the

runtime engine is executing.
<user-specified>

Command Operation to be executed. Mode Configure
ClearFaults

Param Used only with the Mode
command; specifies mode of the
runtime engine.

Run Pause Single Scan
Stop
Wonderware InControl™ and InTouch® Reference User’s Guide

Index 21

Index

C
Controller Mode

Wizard 9

D
Displaying the InControl Symbols 12

E
Edit Program

Runtime Edit Wizard 10
Example Showing Linked Symbols 15

F
Function

InControl() 19
InControlRuntimeEngine() 20

H
Help Contents 5

I
InControl Functions Supported by InTouch 6
InControl QuickScript Functions 19
Installing the InControl Wizards 6
InTouch

InControl Wizards 6
Linking Tags to InControl 12

InTouch QuickScript Function
InControl() 19
InControlRuntimeEngine() 20

L
Linking InControl Symbols to InTouch Tags 14
Linking Tags on Remote Systems 15

P
Project

Launch Wizard 7
Project Node/Name and InTouch 18

Q
QuickScript Functions 19

InControl() 19
InControlRuntimeEngine() 20

R
Runtime Engine

Clear Faults Wizard 11
Configure Wizard 8

T
Tag

Link Wizard 12
Tag, InTouch

Link Wizard 12

U
Using the Configure Runtime Engine Wizard 8
Using the InControl Clear Faults Wizard 11
Using the InControl Mode Wizard 9
Using the InControl Project Wizard 7
Using the InControl Runtime Add Tag Wizard 12
Using the InControl Runtime Edit Wizard 10
Using the InTouch Tag Browser 17

W
Wizard

Clear Runtime Engine Faults 11
Configure Runtime Engine 8
InControl 6
Launching Project 7
Runtime Editing 10
Setting Controller Mode 9
Tag Link 12
Wonderware InControl™ and InTouch® Reference User’s Guide

22 Index
Wonderware InControl™ and InTouch® Reference User’s Guide

Glossary 23
Glossary

Action

Named collection of operations associated with one or more Steps in an SFC.

Action Manager

Use the Action Manager to rename and delete SFC Actions.

Action Qualifier

Graphical programming element in an SFC associated with each Action block
that controls execution of the action logic relative to the period during which
the associated Step is active.

Active File

Program File that is contained in the top Program Editor window with its title
bar highlighted. Commands that are executed from the menus or by clicking on
buttons on the tool bars are performed on the active file.

ActiveX

See FOE.

Analog Alarm

InControl FOE that monitors analog input signals for alarm conditions.

ANY

The ANY data type is a generic data type. ANY can assume the type and range
of any of the data types that are supported by InControl with these exceptions:
File, TMR, and User-Defined.

ANY_BIT

Generic data type that can represent these data types: DWORD, WORD,
BYTE, BOOL, including an individual bit within these data types.

ANY_DATE

Generic data type that can represent these data types: DT, DATE, TOD.

ANY_INT

Generic data type that can represent the INT data type.

ANY_NUM

Generic data type that can represent these data types: ANY_REAL and
ANY_INT.
Wonderware® FactorySuite™ InControl™ User’s Guide

24 Glossary
ANY_REAL

Generic type name that can represent the REAL data type.

Array

Set of data values, all of the same type. Individual elements can be referenced
by an expression consisting of the array name and an indexing expression.

Board

See I/O Card.

Background Execution

Some functions and factory objects can run in background, which means the
runtime engine scan is not delayed while the function or factory object
completes execution.

BOOL

Member of the ANY_BIT group of data types. BOOL data types are valid in
ANY InControl instruction or Function Block that accepts an ANY, ANY_BIT,
or BOOL data type. A BOOL is one bit in length and can have one of two
values: TRUE (1, or on) or FALSE (0, or off).

Boolean Transition

Type of Transition in an SFC represented by an expression consisting of
variables and operators that evaluate to a single Boolean result. If the Boolean
result is TRUE, then the SFC transition condition is satisfied.

Boolean

Logical element or expression that evaluates to either TRUE or FALSE.

BYTE

Member of the ANY_BIT group of data types. BYTE data types are valid in
any InControl instruction or Function Block that accepts an ANY, ANY_BIT,
or BYTE data type. A BYTE is an unsigned integer data type that is composed
of one or more of the digits (0-9) and cannot contain a decimal point. A BYTE
is 8 bits in length and has a range of 0 to 255.

Card

See I/O Card.

Child SFC

The Macro is a specialized POU that provides a means of including one SFC,
the child SFC, for execution from a Step in another SFC, the Parent SFC.

Coil

RLL graphical programming element that represents a Boolean output
Variable.
Wonderware® FactorySuite™ InControl™ User’s Guide

Glossary 25
Connector

Group of I/O ports usually routed to one physical connector on a Board.

Contact

RLL graphical programming element that represents a Boolean input Variable.

Control Loop Element

See Loop.

DATE

Member of the ANY_DATE group of data types. DATE data types are valid in
ANY InControl instruction or Function Block that accepts an ANY,
ANY_DATE, or DATE data type.

DDE

See Dynamic Data Eschange.

DINT

Member of the ANY_NUM group of data types. DINT data types are valid in
ANY instruction or Function Block that accepts an ANY, ANY_NUM,
ANY_INT, or DINT data type. The DINT is a signed integer data type that is
composed of one or more of the digits (0-9) and cannot contain a decimal
point. The DINT is 32 bits in length and has a range of -2147483648 to
+2147483647.

DT

Member of the ANY_DATE group of data types. DT data types are valid in
ANY instruction or Function Block that accepts an ANY, ANY_DATE, or DT
data type. Format: DT#YYYY-MM-DD-HH:MM:S.S YYYY (100-2100) =
year MM (1-12) = month DD (1-31) = day of the month HH (0-23) = hour MM
(0-59) = minute

S.S (0.0-59.0) = seconds (REAL number)

DWORD

Member of the ANY_BIT group of data types. DWORD data types are valid in
ANY InControl instruction or Function Block that accepts an ANY, ANY_BIT,
or DWORD data type. A DWORD is an unsigned integer data type that is
composed of one or more of the digits (0-9) and cannot contain a decimal
point. A DWORD is 32 bits in length and has a range of 0 to 4294967295.

Dynamic Data Exchange

DDE is the passage of data between applications, accomplished without user
involvement or monitoring. In the Windows environment, DDE is achieved
through a set of message types, recommended procedures (protocols) for
processing these message types, and some newly defined data types. By
following the protocols, applications that were written independently of each
other can pass data between themselves without involvement on the part of the
user, e.g. InTouch.
Wonderware® FactorySuite™ InControl™ User’s Guide

26 Glossary
Factory Object

See FOE.

FactorySuite

FactorySuite 2000 is the world's first integrated, component-based MMI
System. With FactorySuite 2000, you have access to all the information you
need to run your factory. - visualization, optimization and control, plant floor
data collection, and data storage and analysis -- to make your plant truly
productive.

File

The FILE data type is a member of the ANY group of data types. FILE is a
Structure that is designed only for the file control variables used with the RLL
and Structured Text file functions.

FOE

InControl is compatible with the ActiveX Server specification. The InControl
Factory Object (FOE) editor is an ActiveX container, which enables you to use
ActiveX controls within an InControl Project. An ActiveX control must be
installed within InControl before you can configure and run it. After
installation, it is referred to as an InControl Factory Object (FOE). Like other
InControl programs, an FOE can run independently. You can also call it for
execution from another Program.

Force

Watch Window utility that sets a Variable to a value that does not change as the
Program runs until you Unforce it. See also Unforcee.

Function

A POU consisting of a set of programming instructions that can be called for
execution by another POU. Functions are algorithms that carry out a single
operation, such as Square Root, Rotate Left, Tangent, etc. A true function
returns a value and is used on the right side of an Assignment statement. See
also Procedure.

Function Block

A POU consisting of a set of programming instructions that can be called for
execution by another POU. Unlike a function, one or more instances of a
function block type can be created; and local variables maintain their values
between calls.

INT

Member of the ANY_NUM group of data types. INT data types are valid in
ANY instruction or Function Block that accepts an ANY, ANY_NUM,
ANY_INT, or INT data type. The INT is a signed integer data type that is
composed of one or more of the digits (0-9) and cannot contain a decimal
point. The INT is 16 bits in length and has a range of -32768 to +32767.
Wonderware® FactorySuite™ InControl™ User’s Guide

Glossary 27
I/O Card

Plugs into one of the expansion slots of the InControl system unit and connects
to the peripheral I/O racks and modules. Also called Card or Board.

Jump

Graphical programming element in an SFC or RLL Program that directs
program flow to another location in the program identified by a Label.

Label

Graphical programming element in an SFC or RLL Program that identifies
where program flow is to resume from its corresponding Jump.

Loop

Graphical programming element in an SFC diagram. The Loop Element
contains two Transition conditions: one directs Program flow to continue in the
downward direction, and the other directs program flow to loop back. Multiple
Loop Elements can be nested within each other, but they can not cross each
other and can not enter Select Diverges or Parallel Diverges.

LREAL

Member of the ANY_NUM group of data types. LREAL data types are valid
in any instruction or Function Block that accepts an ANY, ANY_NUM,
ANY_REAL, or LREAL data type. An LREAL number data type is a 64-bit
value composed of one or more of the digits (0-9), is signed, and contains a
decimal point. The range for LREAL numbers is the following:
-1.79769313486231 E308 (negative) to +1.79769313486231 E308 (positive),
and includes zero.

Macro

A specialized POU that provides a means of including one SFC, the child, for
execution from a Step in another SFC, the parent. The Macro Step is the
graphical element in an SFC that represents the inclusion of another entire SFC
as a single Step. The included SFC begins execution at its Start Step when the
Macro Step that calls it becomes active. Execution in the Macro Step is
completed when the included SFC reaches its End Step.

OCX

See FOE.

Parallel Divergence

SFC graphical programming element that splits a control path into two or more
parallel paths. When Program execution reaches the beginning of a Parallel
Divergence, all the subsequent control paths become active in parallel. These
control paths continue to be active until all the control paths within a Parallel
Diverge reach the point of convergence. At this point, all the paths within the
Parallel Divergence are deactivated and the control path below the
convergence point will become active.
Wonderware® FactorySuite™ InControl™ User’s Guide

28 Glossary
Parent SFC

The Macro is a specialized POU that provides a means of including one SFC,
the Child SFC, for execution from a Step in another SFC, the parent SFC.

PID Loop

InControl FOE that manages proportional, integral, and derivative feedback
control.

Port

I/O port usually consisting of eight I/O bits. A port may be accessed as an
integer within programs.

POU

The POU (Program organization unit) is defined by the IEC 61131-3 standard
as the basic programming unit. InControl supports these POUs: program,
Function, Function Block, and Macro.

Procedure

Predefined algorithm that carries out a single operation, such as Delete File,
Abort All, Rewind File, etc. A procedure does not return a value. See also
Function.

Program

A POU consisting of a block of code that can be scheduled to execute
automatically every scan.

Project

Organizes or groups the application programs and configuration files for an
application in a separate subdirectory.

REAL

Member of the ANY_NUM group of data types. REAL data types are valid in
ANY instruction or Function Block that accepts an ANY, ANY_NUM,
ANY_REAL, or REAL data type. A REAL number data type is a 32-bit value
composed of one or more of the digits (0-9), is signed, and contains a decimal
point. The range for REAL numbers is the following: -3.402823 E38
(negative), to +3.402823 E38 (positive), and includes zero.

Relay Ladder Logic

RLL is the graphical programming language used for describing application
Program logic based on an electrical relay Contact and Coil analogy.

Retentive Variable

A Variable that retains its value in the event of a power loss.
Wonderware® FactorySuite™ InControl™ User’s Guide

Glossary 29
RLL Transition

Transition in an SFC that is programmed using Relay Ladder Logic. The RLL
transition consists of a single RLL rung with an output Coil that has the same
name as the RLL transition. When this output coil has power flow, the SFC
transition condition is satisfied.

Runtime Engine

Module responsible for scheduling and executing the Program logic associated
with the Project's source code, e.g., SFC, RLL, etc. This module also performs
as a SuiteLink or DDE server to SuiteLink or DDE clients such, as InTouch.

Select Divergence

SFC graphical programming element that splits a single control path into two
or more paths. The control path selected for execution is determined by the
Transition conditions that are located at the beginning of each of the new
control paths.

Sequential Function Chart

SFC is the graphical programming language for diagramming sequential logic
using Steps, Transitions and Actions.

SFC Transition Coil

SFC graphical programming element that can be associated with a Step or a
Macro Step and provide Program flow control. Associated with a Step, the
SFC Transition Coil can abort the Step and direct program flow to another
Step. Associated with a Macro Step, the SFC transition coil can abort the Child
SFC and direct program flow to another Step in the Parent SFC.

SINT

Member of the ANY_NUM group of data types. INT data types are valid in
ANY instruction or Function Block that accepts an ANY, ANY_NUM,
ANY_INT, or SINT data type. The SINT (short integer) is a signed integer
data type that is composed of one or more of the digits (0-9) and cannot contain
a decimal point. The INT is 8 bits in length and has a range of -128 to +127.

Step

Graphical element in an SFC that represents a state or span of TIME in the
Program execution during which the actions and functions associated with the
Step are performed.

STL

See Structured Text Language.

String

Member of the ANY group of data types. STRING data types are valid in any
InControl instruction or Function Block that accepts an ANY or STRING data
type. The format for a STRING data type consists of a string of up to 1024
ASCII characters in single quotation marks.
Wonderware® FactorySuite™ InControl™ User’s Guide

30 Glossary
Structure

See UUSER_DEFINED.

Structured Text Language

The Structured Text programming language is a subset of an IEC61131
compliant set of text-based instructions.

SuiteLink

The SuiteLink driver provides reliable, high-speed data collection for
controllers, PC boards and other devices. Unlike DDE, which transfers only
one message at a TIME, SuiteLink transfers blocks of messages, allowing
faster and more efficient data transfer.

Symbol

See Variable.

Tagname

The name assigned to a Variable in the InTouch database to represent an
InControl variable.

Task View

Graphical display of the programs in a Project, arranged by priority of
execution.

TIME

Member of the ANY group of data types. TIME data types are valid in any
InControl instruction or Function Block that accepts an ANY or TIME data
type. The format of the TIME data type consist of a T# or t# followed by a
sequence of one or more numbers and time unit specifiers. Examples: T#1D2h
= 1 day and 2 hours t#26H = 26 hours t#5m45s = 5 minutes and 45 seconds
t#26S200MS = 26 seconds and 200 milliseconds T#900ms = 900 milliseconds

TMR

The TMR data type is a member of the ANY group of data types. TMR data
types are valid in any instruction or Function Block that accepts an ANY or
TMR data type.

TOD

The TOD data type is a member of the ANY_DATE group of data types. TOD
data types are valid in ANY instruction or Function Block that accepts an
ANY, ANY_DATE, or TOD data type.

Transition

Graphical element in an SFC that evaluates to a Boolean result. This Boolean
result determines when Program flow is passed from Step(s) preceding the
transition to Step(s) following the transition.
Wonderware® FactorySuite™ InControl™ User’s Guide

Glossary 31
UDINT

The UDINT data type is equivalent to the DWORD data type. An InControl
enhancement to the ANY_BIT data types makes the UDINT (unsigned double
integer) data type unnecessary.

UINT

The UINT data type is equivalent to the WORD data type. An InControl
enhancement to the ANY_BIT data types makes the UINT (unsigned integer)
data type unnecessary.

Unforce

Watch Window utility that removes the Force status from a Variable, allowing
the Program to write values to it. See also Unforce.

USER_DEFINED

Member of the ANY group of data types. The USER-DEFINED data type can
be either a Structure of a enumeration. A structure consists of a group of data
types (integers, Booleans, strings, etc.) that Function as a group. They do not
all have to be same data type. An enumeration is a type of structure, the
members of which are a set of DINT data types. Use an enumeration when you
need to define a group of named constants. USER-DEFINED data types are
valid in any InControl instruction or Function Block that accepts an ANY or
USER-DEFINED data type.

USINT

The USINT data type is equivalent to the BYTE data type. An InControl
enhancement to the ANY_BIT data types makes the USINT (unsigned short
integer) data type unnecessary.

Variable

Internal memory location that contains Project data. The content of the
information is defined by the data type and can be REAL numbers, integers,
strings of characters, etc. The Symbol Manager is used to define a variable and
to assign it a symbolic name and data type. Also called symbol.

WORD

Member of the ANY_BIT group of data types. WORD data types are valid in
ANY InControl instruction or Function Block that accepts an ANY, ANY_BIT,
or WORD data type. A WORD is an unsigned integer data type that is
composed of one or more of the digits (0-9) and cannot contain a decimal
point. A WORD is 16 bits in length and has a range of 0 to 65535.
Wonderware® FactorySuite™ InControl™ User’s Guide

32 Glossary
Wonderware® FactorySuite™ InControl™ User’s Guide

	InControl™ User’s Guide
	Contents

	InControl™ Environment User’s Guide
	Contents
	Getting Started with InControl
	Overview
	IEC Compliance
	Programming Languages

	System Requirements
	Technical Support
	Before Contacting Wonderware

	Installation Guidelines
	Before You Start—InTouch and InControl
	Before You Start—Additional Recommendations

	About the User Guides
	Reading a Document
	Contents - This User's Guide
	Contents - I/O User's Guides
	The HTML Help

	Running InControl: Quickstart
	Starting InControl
	Creating a Project

	What’s Next?

	The InControl Environment
	Working in the Development/Runtime Windows
	Development Window
	Runtime Window
	Runtime Engine Icons

	Using the Standard Toolbar
	Using the Runtime Toolbar
	Using the Debug Toolbar
	Using the Menu Bar
	File Commands
	Edit Commands
	View Commands
	Insert Commands
	Runtime Commands
	Debug Commands
	Tools Commands
	Window Commands
	Help Commands

	Setting Up Security
	Overview
	Logging On/Off and Changing a Password
	Logging On
	Logging Off
	Changing a Password

	Managing Security
	Adding User Names
	Changing Passwords and Deleting User Names

	Locking SFC Algorithms
	Using Windows Security

	I/O Configuration
	Overview
	Single Board Installation
	Multiple Board Installation
	Multiple Board / Different Vendor Installation
	Communicating Without a Scanner Board
	Communicating Through SuiteLink
	General Installation Procedure

	Adding/Removing Drivers
	Adding a Driver to the Project Window
	Removing or Deleting a Driver

	Configuring the I/O
	Simulating I/O

	Project Organization/ Management
	Overview
	Programs
	Function Blocks
	Functions
	Function/Function Block Differences
	Macros
	Variable Names

	Managing Projects
	Creating a Project
	Removing a Project
	Adding a Project
	Modifying the Project Name/Description
	Adding a New POU to a Project
	Adding an Existing POU to a Project
	Removing/Deleting a POU
	Renaming a POU
	Organizing a Project

	Defining Function Blocks
	Setting Parameters and Variables
	Defining an Instance
	Entering Code for the Call

	Defining Functions
	Setting Parameters and Variables
	Specifying Data Type for a Function Return Value
	Functions and Background Execution
	Entering Code for the Call

	Adding/Organizing I/O Drivers
	Configuring the Runtime Engine
	Accessing the Symbol Manager
	Targeting the Hardware Platform
	Changing Program Priority and Execution Order

	Defining Variables
	Introduction
	Variable Names
	Local and Global Variables
	Variables Assigned a Constant Value
	Retentive Variables
	Enumerated Variables
	Read-Only Variables
	Forced Variables
	Variables and Runtime Operation

	Variable Data Type Groups
	LREAL
	REAL
	DINT
	INT
	SINT
	Unsigned Integers
	DWORD
	WORD
	BYTE
	BOOL
	Date / Time Data Types
	DT
	DATE
	TOD
	TIME
	Using Date/Time-Based Data Types in Expressions

	TMR
	ANY
	FILE
	STRING
	RTEMODE
	User-Defined
	Data Type Conversion
	Accessing the Symbol Manager
	Using the Symbol Manager Toolbar
	Editing Tips - Context Menus
	Editing Tips - Changing Member Order
	Editing Tips - Copy / Paste / Move Symbols
	Creating a Variable
	Creating an Array of Variables
	Referencing Arrays
	Assigning a Name to a Bit in a Variable
	Creating a User-Defined Data Type
	Custom-Designing a Data Type
	Using the User-Defined Data Type

	Printing Information for Variables
	System Variables - General
	System Variables - Runtime Engine
	Transferring Symbol Databases
	Symbol Exchange Between InControl Projects
	Symbol Cross-Reference Reports

	Symbol Exchange Between InControl and InTouch
	Importing/Exporting Symbols
	InControl CSV File Format
	Editing Symbol Files

	Using the Factory Object Editor
	Defining a Factory Object
	Installing ActiveX Controls
	Organizing FOEs
	Adding FOEs to a Project
	Configuring Factory Objects
	Using the Tool and Menu Bars
	Running and Controlling FOEs
	Runtime Animation
	Uploading Parameters
	Using Third-Party FOEs
	Event Handling by Factory Objects
	Mapping Functions to Events
	Defining the Function

	Referencing InControl Factory Objects

	Running a Project
	Selecting Runtime Options
	Connecting to the Runtime Engine
	Checking the Connected Node
	Using the Runtime Engine Monitor
	Using the Runtime Engine Icons
	Using the Runtime Engine Monitor Commands
	Running/Exiting the Runtime Engine Monitor
	Validation and Download
	Validating a Project
	Downloading a Project
	Validating an Individual Program
	Downloading an Individual Program
	Project/Program Execution
	Running a Project
	Running an Individual Program

	Stopping a Project
	Stopping a Program
	Project/Program Execution Order
	Setting Program Order in the Execution View
	Setting Program Priority in the Execution View

	Debugging a Program
	Checking the Status Bar
	Checking the Program Mode
	Single Scanning a Project/Program
	Using Breakpoints
	Stepping a Program

	Monitoring Program Variables
	Adding a Variable to the Watch Window
	Adding Multiple Variables to the Watch Window
	Removing a Variable
	Adding a Table of Variables to the Watch Window
	Modifying/Forcing a Variable
	Adjusting Update Rate
	Pausing the Watch Window Update
	Unforcing Variables
	Displaying Forced Variables
	Using the Watch Window on a Remote Computer
	Using the Watch Window Menu
	Using the Stand-Alone Watch Window
	Using the Editor Window

	Checking the Wonderware Logger
	Using the Runtime Engine System Variables

	InControl System Administration
	Runtime Engine Timeline
	SFC Execution
	Structured Text Program Execution
	RLL Execution
	FOE Execution
	Program Execution and Stepping a Program
	Project/Program Execution and Single Scanning

	Accessing the Runtime Engine Properties
	Checking General Properties of the Runtime Engine
	Setting Scan Times
	Tuning the Scan
	Targeting CPU Utilization
	Examples of Normal / Skipped Scans
	Scan Operation and the Watchdog Timer
	I/O Considerations

	Checking Runtime Status Data
	Checking the Remote Node
	Using the Remote Tab
	Downloading Files
	Synchronizing Time

	Configuring Components
	Using the Components Tab
	SuiteLink Component Configuration
	SuiteLink Component Status

	Looking at Logger Data
	Clearing Runtime Engine Fault Mode
	Clearing Program Fault Mode
	Handling I/O and Other Hardware Errors
	Configuring Runtime Engine Service Startup
	Handling Power Failure
	Using an Uninterruptible Power Supply
	Using System and User-Defined Variables
	Retentive/Forced Variables and Power Failure
	Restarting Projects Automatically
	Setting the Restart Mode
	Backing Up Retentive/Forced Variables

	Running Multiple Projects
	Configuring a Connection to a Remote Node
	Transferring/Archiving Project Data
	Using the Watch Window on the Remote Node
	Configuring I/O on the Remote Node

	Changing System Registry Keys
	Changing FOE Registry Setting
	Displaying Compiler Warnings

	Issuing Runtime Engine Commands
	Value/Time/Quality Support
	Entering Event Viewer Settings

	Reserved Words
	InControl Reserved Words

	Data Types
	Data Type Categories
	Data Type Ranges

	Monitoring Data By DDE/SuiteLink
	Overview
	Monitoring Variables from InTouch
	Monitoring Variables from Excel

	Extensions to IEC 61131-3
	Data Types
	Unsupported Data Types
	Data Type Conversion

	Parameters Specific to InControl
	Error Conditions

	Keyboard Shortcuts
	General Operations
	Project Window
	Output Window
	Project Manager
	Watch Window
	Program Editors
	Symbol Manager
	Symbol Picker

	Index

	InControl™ Language Editors User’s Guide
	Contents
	Relay Ladder Logic Program Elements
	Power Flow - Solving Simple Contact/Coil Logic
	Power Flow - Function Blocks
	RLL Extensions to IEC 61131-3
	Creating an RLL Program
	The RLL Tools
	Using the RLL Tool and Menu Bar
	Editing Tips

	Adding Contacts
	Adding Coils
	Adding Rungs
	Adding OR Branches
	Deleting OR Branches
	Adding Labels and Jump Coils
	Adding SFC Transition Coils
	Adding Functions / Function Blocks
	Predefined Functions / Function Blocks
	User-Defined Functions / Function Blocks

	Adding a Comment

	Using the SFC Editor
	Creating an SFC Program
	The SFC Tools
	Using the SFC Tool and Menu Bar
	Editing Tips

	Adding Program Elements
	Adding a Step
	Adding a Transition
	Adding RLL Transitions
	Adding Boolean Transitions
	Adding a Macro Step
	Adding an Action
	Adding New Actions
	Editing New Actions
	Editing Existing Actions
	Editing Parameters of an Existing Action
	Deleting an Action
	Renaming an Action
	Adding a Jump
	Adding a Label
	Adding a Loop
	Adding a Select Divergence
	Adding a Parallel Divergence
	Adding a Library Step
	Building the Step Library
	Adding a Step from the Library
	Bitmap Library Editor
	Adding Program Comments

	Editing Program Elements

	SFC Program Elements
	Elements of the SFC
	Program Flow
	SFC Extensions to IEC 61131-3
	Step
	Parameters
	Code
	Using Library Steps
	Using the SFC and Step System Variables

	Transition
	Evaluation
	Parameters

	Macro Step
	Parameters
	Code
	Macro Step Usage Rules

	Action
	Editing the Action RLL
	Parameters
	Choosing Action Name
	Choosing Action Qualifier
	Setting Action Duration
	Choosing the Program Label
	Designing a Safe State

	Jump/Label: Program Flow
	Using a Jump with a Label
	Using an SFC Transition Coil with a Label
	Parameters - Edit Jump and Edit Label Dialog Boxes

	Loop: Program Flow
	Select Divergence: Program Flow
	Parallel Divergence: Program Flow
	Rules for Creating Parallel Divergences

	Structured Text Program Elements
	Elements of Structured Text
	STL Extensions to IEC 61131-3
	Creating an STL Program
	Using the Structured Text Tool and Menu Bars
	STL Editing Tips
	Entering Program Code
	Expressions
	Operators
	Data Types

	Statement Types
	Assignment
	BREAK
	CASE
	Comment
	EXIT
	FOR
	Function/Procedure Call
	IF
	INCLUDE
	REPEAT
	RETURN
	SCAN
	WHILE
	#pragma
	InControl Functions and Function Blocks

	RLL Example Program
	Developing an RLL Program
	Creating a New RLL Program
	Adding a Contact
	Adding a Coil

	Running the RLL Program
	Monitoring Variables in the RLL Program
	Developing a Function
	Creating a New Function
	Specifying Return Value Data Type
	Creating Function Parameters
	Entering Function Code
	Creating the Calling Program
	Creating Variables for the Calling Program

	Calling and Running the Function
	Downloading the Project
	Adding Variables to the Watch Window
	Setting the Project to Run Mode

	SFC Example Program
	Developing an SFC Program
	Creating a New SFC Program
	Adding a Step
	Entering Code for the Step
	Creating Variables for the SFC Program
	Adding a Second Step
	Adding a Transition
	Alternative Looping

	Running the SFC Program
	Downloading the SFC Program
	Adding Variables to the Watch Window
	Single Scanning the SFC Program

	STL Example Program
	Developing a Structured Text Program
	Creating a New STL Program
	Entering STL Code
	Creating Variables for the STL Program

	Running the STL Program
	Downloading the Structured Text Program
	Adding Variables to the Watch Window
	Setting the Program to Run Mode

	Developing a Function Block
	Creating a New Function Block Type
	Entering Function Block Code
	Creating Function Block Parameters
	Creating the Calling Program
	Creating Variables for the Calling Program
	Creating the Function Block Instances

	Calling and Running the Function Block
	Downloading the Project
	Adding Variables to the Watch Window
	Setting the Project to Run Mode
	Additional Characteristics of Function Blocks

	Developing a Function
	Creating a New Function
	Entering Function Code
	Specifying Return Value Data Type
	Creating Function Parameters
	Creating the Calling Program
	Creating Variables for the Calling Program

	Calling and Running the Function
	Downloading the Project
	Adding Variables to the Watch Window
	Setting the Project to Run Mode
	Additional Characteristics of Functions

	InControl™ Function and Function Block Reference User’s Guide
	Contents
	Functions and Function Blocks
	Extensions to IEC 61131-3
	Function/Function Block Groups
	ABORT_ALL
	ABS
	ACOS
	ADD
	AND
	ARRAY_TO_STRING
	ASIN
	ATAN
	BCD_TO_INT
	CLOSEFILE
	CONCAT
	COPYFILE
	COS
	CTD
	CTU
	CTUD
	Counting Up or Down
	Counting Up
	Counting Down

	DATE_TO_REAL
	DATE_TO_STRING
	DELETE
	DELETEFILE
	DIV
	EQ
	EXP
	EXPT
	F_TRIG
	FIND
	GE
	GT
	INSERT
	INT_TO_BCD
	INT_TO_REAL
	INT_TO_STRING
	LE
	LEFT
	LEN
	LN
	LOG
	LT
	MAX
	MID
	MIN
	MOD
	MOVE
	MSGWND
	MUL
	NE
	NEG
	NEWFILE
	NOT
	OPENFILE
	OR
	R_TRIG
	READFILE
	REAL_TO_DATE
	REAL_TO_INT
	REAL_TO_STRING
	REAL_TO_TIME
	REPLACE
	REWINDFILE
	RIGHT
	ROL
	ROR
	SHL
	SHR
	SIN
	SQRT
	STRING_TO_ARRAY
	STRING_TO_DATE
	STRING_TO_INT
	STRING_TO_REAL
	STRING_TO_TIME
	SUB
	TAN
	TIME_TO_REAL
	TIME_TO_STRING
	TOF
	TON
	TP
	TRUNC
	WRITEFILE
	XOR

	InControl™ and InTouch® Reference User’s Guide
	Contents
	InControl and InTouch
	InControl Functions Supported by InTouch
	Installing the InControl Wizards

	Using the InControl Project Wizard
	Using the Configure Runtime Engine Wizard
	Using the InControl Mode Wizard
	Using the InControl Runtime Edit Wizard
	Using the InControl Clear Faults Wizard
	Using the InControl Runtime Add Tag Wizard
	Displaying the InControl Symbols
	Linking InControl Symbols to InTouch Tags
	Example Showing Linked Symbols
	Linking Tags on Remote Systems

	Using the InTouch Tag Browser
	Project Node/Name and InTouch
	InControl QuickScript Functions
	InControl()
	InControlRuntimeEngine()

	Glossary

